Advertisement

Metallurgical and Materials Transactions A

, Volume 29, Issue 6, pp 1573–1578 | Cite as

A new equation for the Cr equivalent in 9 to 12 pct Cr steels

  • S. H. Ryu
  • Jin Yu
Article

Abstract

In advanced 9 to 12 pct Cr steels, the Cr equivalent is used as a measure to check the formation of δ-ferrite. In the present analysis, 29 alloys of varying composition were vacuum induction melted, and the amounts of δ-ferrite were measured in as-tempered conditions. Based on this and previous results on 9 to 12 pct Cr steels, a new equation for the Cr equivalent is proposed and correlated with the amount of δ-ferrite formation. Results indicate that the new Cr equivalent equation shows better correlation than previous equations and predicts the amount of δ-ferrite formed reasonably well.

Keywords

Ferrite Material Transaction Dual Phase Steel Iron Steel Inst Notch Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.H. Thielemann: ASTM Proc., 1940, vol. 40, pp. 788–804.Google Scholar
  2. 2.
    D.L. Newhouse, C.J. Boyle, and R.M. Curran: Preprint of the 68th ASTM Annual Meeting, Purdue University, Lafayette, IN, June 13–18, 1965.Google Scholar
  3. 3.
    P. Patriarca, S.D. Harkness, J.M. Duke, and L.R. Cooper: Nucl. Technol., 1976, vol. 28, pp. 516–36.Google Scholar
  4. 4.
    K. Asakura, Y. Yamashita, T. Yamada, and K. Shibata: Iron Steel Inst. Jpn. Int., 1990, vol. 30, pp. 937–46.Google Scholar
  5. 5.
    H. Schneider: Foundry Trade J., 1960, vol. 108, pp. 562–63.Google Scholar
  6. 6.
    F.B. Pickering: Int. Met. Rev., 1976, Dec., pp. 227–68.Google Scholar
  7. 7.
    G. Aggen: U.S. Patent 3,650,731.Google Scholar
  8. 8.
    V.K. Bungardt, E. Kunze, and E. Horn: Arch. Eisenhuttenwes., 1967, vol. 38, pp. 309–20.Google Scholar
  9. 9.
    R.L. Rickett, W.F. White, and C.S. Walton: ASM Trans., 1952, vol. 44, p. 138.Google Scholar
  10. 10.
    Y. Iwabuchi, M. Murata, S. Yamakuro, M. Yamada, and O. Watanabe: J. Iron Steel Inst. Jpn. (Tetsu-to-Hagané), 1990, vol. 76, pp. 1060–67.Google Scholar
  11. 11.
    H. Ezaki, M. Morinaga, K. Kusunoki, and Y. Tsuchida: J. Iron Steel Inst. Jpn. (Tetsu-to-Hagané), 1992, vol. 78, pp. 1377–82.Google Scholar
  12. 12.
    K.J. Irvine, D.J. Crowe, and F.B. Pickering: J. Iron Steel Inst., 1960, Aug., pp. 386–405.Google Scholar
  13. 13.
    M. Tamura, M. Inohara, and N. Yamanouchi: J. Iron Steel Inst. Jpn. (Tetsu-to-Hagané), 1984, vol. 70, p. S524.Google Scholar
  14. 14.
    R. Fenn and M.F. Jordan: Met. Technol., 1982, vol. 9, pp. 327–37.Google Scholar
  15. 15.
    T. Fujita and K. Asakura: Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 1073–79.Google Scholar
  16. 16.
    K. Miyahara, Y. Kobayashi, and Y. Hosoi: J. Nucl. Mater., 1991, vols. 179–181, pp. 667–70.CrossRefGoogle Scholar
  17. 17.
    K. Asakura, T. Fujita, and Y. Otoguro: J. Iron Steel Inst. Jpn. (Tetsu-to-Hagane), 1987, vol. 73, pp. 1762–69.Google Scholar
  18. 18.
    T. Fujita, K. Asakura, and T. Sato: Trans. Iron Steel Inst. Jpn., 1979, vol. 19, pp. 605–13.Google Scholar
  19. 19.
    T. Fujita, K. Yamashita, and H. Miyake: Trans. Iron Steel Inst. Jpn., 1980, vol. 20, pp. 384–91.Google Scholar
  20. 20.
    T. Fujita, K. Asakura, and H. Miyake: Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 13–21.Google Scholar
  21. 21.
    C. Beger, R.B. Scarlin, K.H. Mayer, D.V. Thornton, and S.M. Beech: Proc. 5th Int. Conf. on Materials for Advanced Power Engineering, Liege, Belgium, Oct. 3–6, 1994, Kluwer Academic Publishers, Dordrecht, pp. 47–72.Google Scholar
  22. 22.
    K. Hidaka, M. Shiga, S. Nakamura, Y. Fukui, N. Shimizu, R. Kaneko, and Y. Yatanabe: Proc. 5th Int. Conf. on Materials for Advanced Power Engineering, Liege, Belgium, Oct. 3–6, 1994, Kluwer Academic Publishers, Dordrecht, pp. 281–90.Google Scholar
  23. 23.
    J. Orr and D. Burton: Proc. 5th Int. Conf. on Materials for Advanced Power Engineering, Liege, Belgium, Oct. 3–6, 1994, Kluwer Academic Publishers, Dordrecht, pp. 263–80.Google Scholar
  24. 24.
    F. Abe, H. Araki, T. Noda, and M. Okada: J. Nucl. Mater., 1988, vols. 155–157, pp. 656–61.CrossRefGoogle Scholar
  25. 25.
    R.L. Klueh and P.J. Maziasz: Metall. Trans. A, 1989, vol. 20A, pp. 373–82.Google Scholar
  26. 26.
    A. Kohyama, Y. Kohno, K. Asakura, and H. Kayano: J. Nucl. Mater., 1994, vols. 212–215, pp. 684–89.CrossRefGoogle Scholar
  27. 27.
    K.W. Tupholme, D. Dulieu, and G.J. Butterworth: J. Nucl. Mater., 1988, vols. 155–157, pp. 650–55.CrossRefGoogle Scholar
  28. 28.
    R. Guillou, M. Guttmann, and P. Dumoulin: Met. Sci., 1981, Feb., pp. 63–72.Google Scholar
  29. 29.
    D.R. Barraclough and D.J. Gooch: Mater. Sci. Technol., 1985, vol. 1, pp. 961–67.Google Scholar
  30. 30.
    R.C. Thomson and H.K.D.H. Bhadeshia: Metall. Trans. A, 1992, vol. 23A, pp. 1171–79.Google Scholar
  31. 31.
    Metals Handbook, 8th ed., ASM, Metals Park, OH, 1973, vol. 7, p. 342.Google Scholar
  32. 32.
    R. Benz, J.F. Elliott, and J. Chipman: Metall. Trans., 1974, vol. 5, pp. 2235–40.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1998

Authors and Affiliations

  • S. H. Ryu
    • 1
  • Jin Yu
    • 2
  1. 1.the Life Assessment Research Team, Research & Development CenterKorea Heavy Industries & Construction Co., Ltd.KyungnamKorea
  2. 2.the Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations