Metallurgical and Materials Transactions A

, Volume 28, Issue 6, pp 1289–1295 | Cite as

The effect of strontium on the Mg2Si precipitation process in 6201 aluminum alloy

  • M. H. Mulazimoglu
  • A. Zaluska
  • F. Paray
  • J. E. Gruzleski


A transmission electron microscopy (TEM) study of a 6201 aluminum alloy to which controlled strontium additions were made has revealed important differences compared to the same alloy free of strontium. In the as-cast state, strontium favors the formation of α-AlFeSi (Al8Fe2Si) rather than β-AlFeSi (Al5FeSi) phase, resulting in a greater quantity of excess silicon present in the strontium-treated alloy. During heat treatment, the excess silicon allows a greater density of finer β″-Mg2Si precipitates to form, leading to increased tensile strength values and increased electrical resistivity. Strontium also retards the growth of the precipitates formed during heat treatment and inhibits formation of the equilibrium β-Mg2Si phase. As a result, the strontium-treated alloy exhibits a resistance to overaging.


Material Transaction Electrical Resistivity Ultimate Tensile Strength Subgrain Structure Coherency Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Westengen and N. Ryum: Z. Metallkd., 1979, vol. 70, pp. 528–35.Google Scholar
  2. 2.
    I. Kovacs, J. Lendvai, and E. Nagy: Acta Metall., 1972, vol. 29, pp. 975–83.Google Scholar
  3. 3.
    J. Lendvai, I. Kovacs, and E. Nagy: Phys. Status Solidi, 1972, vol. 14A, pp. 83–89.Google Scholar
  4. 4.
    D.W. Pashley, J.W. Rhodes, and A. Sendorek: J. Inst. Met., 1966, vol. 94, pp. 41–49.Google Scholar
  5. 5.
    M.H. Jacobs: Phil. Mag., 1972, vol. 26, pp. 1–13.Google Scholar
  6. 6.
    I. Dutta and S.M. Allen: J. Mater. Sci. Lett., 1991, vol. 10, pp. 323–26.CrossRefGoogle Scholar
  7. 7.
    M.H. Mulazimoglu, A. Zaluska, J.E. Gruzleski, and F. Paray: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 929–36.Google Scholar
  8. 8.
    M.H. Mulazimoglu, R.A.L. Drew, and J.E. Gruzleski: J. Mater. Sci. Lett., 1989, vol. 8, pp. 297–300.CrossRefGoogle Scholar
  9. 9.
    F. Paray and J.E. Gruzleski: Mater. Sci. Technol., 1994, vol. 10, pp. 757–61.Google Scholar
  10. 10.
    P. Skjerpe: Metall. Trans. A, 1987, vol. 18A, pp. 189–200.Google Scholar
  11. 11.
    S. Stefaniay, A. Griger, and T. Turmezey: J. Mater. Sci., 1987, vol. 22, pp. 539–46.CrossRefGoogle Scholar
  12. 12.
    H.K. Hardy: J. Inst. Met., 1956, vol. 84, pp. 429–35.Google Scholar
  13. 13.
    A. Kelly and R.B. Nicholson: Progr. Mater. Sci., 1963, vol. 10, pp. 149–73.Google Scholar
  14. 14.
    I.J. Polmear: Mater. Sci. Forum, 1987, vols. 13–14, pp. 195–212.CrossRefGoogle Scholar
  15. 15.
    I.J. Polmear: Light Alloys, Halsted Press, London, England, U.K. 1995, p. 31.Google Scholar
  16. 16.
    M.H. Mulazimoglu, J.E. Gruzleski, B. Closset, and J.C. Delomel: Aluminium, 1995, pp. 62–66.Google Scholar
  17. 17.
    S. Ceresara, E. Di Russo, P. Fiorini, and A. Giarda: Mater. Sci. Eng., 1969–70, vol. 5, pp. 220–27.Google Scholar
  18. 18.
    L.F. Mondolfo: Aluminium Alloys: Structure and Properties, Butterworth and Co., London, 1976, p. 566.Google Scholar
  19. 19.
    Z.W. Huang, M.H. Loretto, R.E. Smallman, and J. White: Mater. Sci. Technol., 1994, vol. 10, pp. 869–78.Google Scholar
  20. 20.
    H.J. Rack and R.W. Krenzer: Metall. Trans. A, 1977, vol. 8A, pp. 335–46.Google Scholar
  21. 21.
    M.P. Clode: Proc. 5th Int. Al Extrusion Tech. Sem., The Aluminum Association, Chicago, IL, 1992, pp. 79–99.Google Scholar
  22. 22.
    S.J. Andersen: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1931–37.Google Scholar
  23. 23.
    W. Wert: Proc. 5th Int. Al Extrusion Tech. Sem., The Aluminum Association, Chicago, Il, 1992, pp. 393–402.Google Scholar
  24. 24.
    M.H. Mulazimoglu, R.A.L. Drew, and J.E. Gruzleski: Metall. Trans. A, 1987, vol. 18A, pp. 941–47.Google Scholar
  25. 25.
    M. Shamsuzzoha, L.M. Hogan, and J.T. Berry: AFS Trans., 1993, pp. 999–1005.Google Scholar
  26. 26.
    M. Shamsuzzoha and L.M. Hogan: J. Cryst. Growth, 1985, vol. 72, pp. 735–37.CrossRefGoogle Scholar
  27. 27.
    S.Z. Lu and A. Hellawell: J. Cryst. Growth, 1985, vol. 73, pp. 316–28.CrossRefGoogle Scholar
  28. 28.
    S.Z. Lu and A. Hellawell: Metall. Trans. A, 1987, vol. 18A, pp. 1721–33.Google Scholar
  29. 29.
    M. Ryvola and L.R. Morris: Microstruct. Sci., 1977, vol. 5, pp. 203–6.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1997

Authors and Affiliations

  • M. H. Mulazimoglu
    • 1
  • A. Zaluska
    • 2
  • F. Paray
    • 3
  • J. E. Gruzleski
    • 3
  1. 1.the Aluminum DivisionAmerican Racing Equipment Inc.Rancho Dominguez
  2. 2.Department of PhysicsMcGill UniversityMontrealCanada
  3. 3.Department of Mining and Metallurgical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations