Advertisement

Metallurgical and Materials Transactions A

, Volume 28, Issue 9, pp 1725–1734 | Cite as

A thermodynamic description of the Al-Mg-Zn system

  • H. Liang
  • S. -L. Chen
  • Y. A. Chang
Article

Abstract

A thermodynamic description of the Al-Mg-Zn system was developed based on critically evaluated experimental data. All binary intermetallic phases are assumed to have negligible ternary solubility except for MgZn2. Three different thermodynamic models are applied to three different types of phases in this system, i.e., disordered solution phases, stoichiometric compounds, and semistoichiometric phases. The model parameters are optimized based on the thermodynamic descriptions of the constituent binaries and experimental phase equilibrium and thermodynamic data available in the literature. The good agreement obtained between several calculated isopleths and thermodynamic values of the liquid phase and experimental data shows that the current description of this system is reasonable. The calculated phase equilibria in the Al-rich corner are believed to be reliable for practical applications, while those away from the Al-rich region are subjected to large uncertainty. Additional experimental investigations are needed to firmly establish the phase equilibrium of this system over wide ranges of composition and temperature.

Keywords

Phase Equilibrium Material Transaction Isothermal Section MgZn Thermodynamic Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.-L. Chen, Y. Zuo, H. Liang, and Y.A. Chang: Metall. Mater. Trans. A., 1997, vol. 28A, pp. 435–46.Google Scholar
  2. 2.
    Y. Zuo and Y.A. Chang: CALPHAD, 1993, vol. 17, pp. 161–74.CrossRefGoogle Scholar
  3. 3.
    S.-L. Chen and Y.A. Chang: CALPHAD, 1993, vol. 17 (2), pp. 113–24.CrossRefGoogle Scholar
  4. 4.
    R. Agarwal, S.G. Fries, H.L. Lukas, G. Petzow, F. Sommer, T.G. Chart, and G. Effenbrerg: Z. Metallkd., 1992, vol. 83, pp. 216–23.Google Scholar
  5. 5.
    G. Eger: Int. Z. Metallogr., 1913, vol. 4, pp. 50–128.Google Scholar
  6. 6.
    W. Sandner and K.L. Meissner: Z. Metallkd., 1923, vol. 15, pp. 160–83.Google Scholar
  7. 7.
    W. Sandner: Z. Anorg. Allg. Chem., 1926, 154, 144–51.CrossRefGoogle Scholar
  8. 8.
    A.A. Bochvar and M.D. Kuznetzov: Metallurgy, 1933, 8, 7–14.Google Scholar
  9. 9.
    V. Fuss: Metallography of Aluminum and Its Alloys, Verlag Julius Springer, Berlin, 1934, pp. 154–55.Google Scholar
  10. 10.
    F. Laves, K. Lohberg, and H. Witte: Metall-Wirtschaft, 1935, 14, 793–94.Google Scholar
  11. 11.
    W.L. Fink and L.A. Willey: Met. Technol., 1936, 8, 3–32.Google Scholar
  12. 12.
    M. Hamasumi: Sci. Rep. Tohoku Imp. Univ. Honda Anniv., 1936, 748–76.Google Scholar
  13. 13.
    M. Hamasumi: Tetsu to Hagané (J. Iron Steel Inst. Jpn.), 1936, 22, 258–71.Google Scholar
  14. 14.
    W. Koster and W. Wolf: Z. Metallkd., 1936, 28, 155–58.Google Scholar
  15. 15.
    W. Koster and W. Dullenkopf: Z. Metallkd., 1936, 28, 309–12.Google Scholar
  16. 16.
    W. Koster and W. Dullenkopf: Z. Metallkd., 1936, 28, 363–67.Google Scholar
  17. 17.
    K. Riederer: Z. Metallkd., 1936, 28, 312–17.Google Scholar
  18. 18.
    W.L. Fink and L.A. Willey: Trans. TMS-AIME, 1937, 124, 78–110.Google Scholar
  19. 19.
    P.Y. Saldau and M.J. Zamotorin: Izv. Sekt. Fiz. Khim. Anal., 1938, 11, 27–36.Google Scholar
  20. 20.
    G.G. Urasov, N.A. Filin, and A.B. Shashin: Metallurgy, 1940, 15, 3–11Google Scholar
  21. 21.
    E. Butchers, G.V. Raynor, and W. Hume-Rothery: J. Inst. Met., 1943, 69, 209–28.Google Scholar
  22. 22.
    A.T. Little, G.V. Raynor, and W. Hume-Rothery: J. Inst. Met., 1943, 69, 423–40.Google Scholar
  23. 23.
    A.T. Little, G.V. Raynor, and W. Hume-Rothery: J. Inst. Met., 1943, 69, 467–84.Google Scholar
  24. 24.
    G. Siebel: Z. Elektrochem., 1943, 49, 218–21.Google Scholar
  25. 25.
    V.I. Mikheeva and O.S. Kryukova: Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1944, 4, 296–308.Google Scholar
  26. 26.
    E. Butchers and W. Hume-Rothery: J. Inst. Met., 1945, 71, 291–311.Google Scholar
  27. 27.
    V.I. Mikheeva and O.S. Kryukova: Dokl. Akad. Nauk SSSR, 1945 vol. 50, pp. 243–46.Google Scholar
  28. 28.
    V.I. Mikheeva and O.S. Kryukova: Dokl. Akad. Nauk SSSR, 1945, 50, 247–48.Google Scholar
  29. 29.
    V.I. Mikheeva: Magnesium Alloys with Aluminum and Zinc, Publishing House of the Academy of Sciences of USSR, Moscow, 1946.Google Scholar
  30. 30.
    D.J. Strawbridge, W. Hume-Rothery, and A.T. Little: J. Inst. Met., 1947, 74, 191–225.Google Scholar
  31. 31.
    W. Koster: Z. Metallkd., 1948, 40, 211–13.Google Scholar
  32. 32.
    P.Y. Saldau: Izv. Sekt. Fiz. Khim. Anal., 1949, 19, 487–96.Google Scholar
  33. 33.
    G. Bergman, L.T. Waugh, and L. Pauling: Nature, 1952, 169, 1057–58.CrossRefGoogle Scholar
  34. 34.
    H. Haneman and A. Schrader: Atlar Metallographicus, Verlag Stahleisen M.B.H., Dusseldorf, 1952, vol. 3 (2), pp. 133–49.Google Scholar
  35. 35.
    M.I. Zamotorin: trudy Leningrad Politekhn. Inst., 1955, 180, 38–43.Google Scholar
  36. 36.
    G. Bergman, L.T. Waugh, and L. Pauling: Acta Crystallogr., 1957, 10, 254–59.CrossRefGoogle Scholar
  37. 37.
    J.B. Clark and F.N. Rhines: Trans. Am. Soc. Met., 1959, 51, 199–221.Google Scholar
  38. 38.
    H. Watanabe: Nippon Kinzoku Gakkai-Si, 1959, 23, 285–88.Google Scholar
  39. 39.
    Z. Kozuka, J. Moriyama, and J. Kushima: J. Electrochem. Soc. Jpn., 1960, 28, 298–301.Google Scholar
  40. 40.
    J.B. Clark: Trans. Am. Soc. Met., 1961, 53, 295–306.Google Scholar
  41. 41.
    P.Y. Saldau: Ph.D. Thesis, Publishing House, Moscow, 1961, pp. 5–8.Google Scholar
  42. 42.
    E.H. Wright: Aluminum Research Laboratories, Aluminum Company of America, private communication referred by J.B. Clark, 1961.Google Scholar
  43. 43.
    A.S. Yue and J.B. Clark: Trans. TMS-AIME, 1961, vol. 22, pp. 383–89.Google Scholar
  44. 44.
    I.A. Aleksakhin and A.A. Semionow: Metalloved. Term. Obrab. Met., 1962, 4, 40–45.Google Scholar
  45. 45.
    J.H. Ault and B.E. Williams: Acta Crystallogr., 1966, 21, 830–31.CrossRefGoogle Scholar
  46. 46.
    P.A. Thackery: J. Inst. Met., 1968, 96, 228–35.Google Scholar
  47. 47.
    A.S. Yue: Metall. Trans., 1970, 1, 19–22.Google Scholar
  48. 48.
    E.E. Lukashenco and A.M. Pogodayev: Zh. Fiz. Khimii, 1971, vol. 45 (8), pp. 1182–84.Google Scholar
  49. 49.
    L.F. Mondolfo: Met. Rev., 1971, 16, 95–124.Google Scholar
  50. 50.
    L.D. Willey: Metals Handbook, 8th ed, ASM, Metals Park, OH, 1973, pp. 397–99.Google Scholar
  51. 51.
    A.M. Pogodayev and E.E. Lukashenco: Izv. Acad. Nauk SSSR Metall., 1974, vol. 6, pp. 90–93.Google Scholar
  52. 52.
    J.H. Auld and S. McK Cousland: Met. Sci., 1976, 73, 445–48.Google Scholar
  53. 53.
    L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworth and Co., London, 1976, pp. 575–90.Google Scholar
  54. 54.
    M.E. Drits: Phase Diagram of Aluminum and Magnesium Alloy Systems, Baikov Institute of Metallurgy, Moscow, 1946.Google Scholar
  55. 55.
    W. Stiller and H. Hoffmeister: Z. Metallkd., 1979, vol. 70, pp. 817–24.Google Scholar
  56. 56.
    G.M. Kuznetsov, A.D. Barsukov, G.B. Krivosheeva, and V.V. Istomin-Kastorovski: Izv. Vyss. Uchebn. Zaved. Tsvetn. Metall., 1985, 1, 88–93.Google Scholar
  57. 57.
    G.M. Kuznetsov, A.D. Barsukov, G.B. Krivosheeva, and E.V. Bashashkina: Izv. Vyss. Uchebn. Zaved. Tsvetn. Metall., 1985, 2, 91–95.Google Scholar
  58. 58.
    N.U. Despande, K.K. Ray, and A.K. Mallik: J. Alloy Phase Diagram, 1986, vol. 2 (2), pp. 108–30.Google Scholar
  59. 59.
    G.M. Kuznetsov, A.D. Barsukov, G.B. Krivosheeva, and E.G. Dieva: Izv. Akad. Nauk SSSR Metall., 1986, 4, 198–200.Google Scholar
  60. 60.
    D.A. Petrov: in Ternary Alloys, G. Petzow and G. Effenberg, eds. ASM INTERNATIONAL, Materials Park, OH, 1993, vol. 7, pp. 57–71.Google Scholar
  61. 61.
    F.S. Rhines: Phase Diagrams in Metallurgy, McGraw-Hill, New York, NY, 1956.Google Scholar
  62. 62.
    Y.A. Chang, J.P. Neumann, A. Mikula, and D. Goldberg: INCRA Monograph VI, Phase Diagrams and Thermodynamic Properties of Ternary Copper-Metal Systems, The International Copper Research Association, Inc., New York, NY, 1979.Google Scholar
  63. 63.
    Y.M. Muggianu, M. Gambino, and J.P. Bros: J. Chim. Phys., 1975, 72, 83–87.Google Scholar
  64. 64.
    O. Redlich and A.T. Kister: Ind. Eng. Chem., 1948, 40, 345–48.CrossRefGoogle Scholar
  65. 65.
    S.-L. Chen: Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI, 1994.Google Scholar
  66. 66.
    S.-L. Chen, Y. Zuo, C.R. Kao, and Y.A. Chang: CALPHAD, 1993, 17, 47–56.CrossRefGoogle Scholar
  67. 67.
    S.-L. Chen, K.-C. Chou, and Y.A. Chang: CALPHAD, 1993, 17, 237–50.CrossRefGoogle Scholar
  68. 68.
    S.-L. Chen, K.-C. Chou, and Y.A. Chang: CALPHAD, 1993, 17, 287–302.CrossRefGoogle Scholar
  69. 69.
    H.L. Lukas, J. Weiss, and E.-Th. Henig: CALPHAD, 1982, vol. 6 (3), pp. 229–51.CrossRefGoogle Scholar
  70. 70.
    U.R. Kattner and B.J. Boettinger: Mater. Sci. Eng., 1992, A152, 9–17.Google Scholar
  71. 71.
    N. Saunders: CALPHAD, 1990, 14, 61–70.CrossRefGoogle Scholar
  72. 72.
    S. an Mey and G. Effenberg: Z. Metallkd., 1986, vol. 77 (7), pp. 449–53.Google Scholar
  73. 73.
    S. an Mey: Z. Metallkd., 1993, vol. 84 (7), pp. 451–55.Google Scholar
  74. 74.
    B. Sundman, B. Jansson, and J.-O. Andersson: CALPHAD, 1985, vol. 9, pp. 153–90.CrossRefGoogle Scholar
  75. 75.
    A.T. Dinsdale: CALPHAD, 1991, 15, 317–425.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1997

Authors and Affiliations

  • H. Liang
    • 1
  • S. -L. Chen
    • 1
  • Y. A. Chang
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadison

Personalised recommendations