Skip to main content
Log in

Hydrogen-Assisted Cracking Behavior of Ni Alloy 718: Microstructure, H Testing Protocol, and Fractography

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen-assisted cracking (HAC) behavior of peak-aged, as-received material of aerospace-grade, and over-aged, based on the API 6ACRA-718 standard, microstructural variants of Ni alloy 718 was studied using slow strain rate test (SSRT) under in-situ hydrogen (H) environment. The effect of cooling rate post solution annealing (SA) treatment on HAC susceptibility was also examined. The influence of H testing protocols with and without H pre-charging on HAC susceptibility was evaluated. The link between microstructural features and HAC fracture features was established using advanced electron microscopy. The results suggest that the microstructural variant of alloy 718, with sufficient initial ductility and clean grain boundaries, may be suitable for service applications in H environments. The over-aged variant obtained by air cooling post SA and followed by aging at 774 °C for 6 hours exhibited better HAC resistance due to the presence of δ phase sporadically decorated along the GBs. The slower cooling rates post SA increased HAC susceptibility. The yield strength of the over-aged variants aged at 802 °C for 8 hours, regardless of SA cooling rates, was lower than the minimum requirement expected by the API standard, and the HAC susceptibility was severe exhibiting intergranular fracture due to continuous decoration of δ phase along the GBs. The peak-aged variant demonstrated severe HAC susceptibility showing transgranular fracture. HAC susceptibility of all variants was greater for SSRT of non-H pre-charged specimens under in-situ H environment at 20 °C than at 80 °C. H pre-charging enhanced the HAC susceptibility further when tested at 20 °C and the role of microstructure was largely suppressed. HAC susceptibility was manifested as both transgranular and intergranular fracture modes depending on the slip localization activity and H availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S.S. Shademan, J.W. Martin, and A.P. Davis: NACE International, Salt Lake City, Utah, 2012.

  2. R. Morana and V.C.M. Smith: NACE Int. Corros. 2015, 2015, pp. 1–13.

    Google Scholar 

  3. P. Nice, G. Rorvik, R. Strong, J.H. Olsen, W.M. Bailey, and T.G. Mobberley: in Corrosion 2014, NACE International, San Antonio, TX, 2014, p. 3892.

  4. P.I. Nice, R. Morana, C. Sviluppo, and S. Materiali: in NACE Corrosion 2013, NACE International, Orlando, Florida, 2013.

  5. V.C.M. Smith, R. Morana, G. Hinds, N. McClelland, A. Bishop, and P. Dent: NACE International, Dallas, Texas, 2015, pp. 1–15.

  6. S.J. Kernion, K.A. Heck, J.H. Magee, and T.N. Werley: Corrosion, 2015, pp. 1–12.

  7. S.J. Kernion, J.H. Magee, T. Werley, and P. Maxwell: in Offshore Technology Conference, OnePetro, Houston, TX, 2014, p. OTC-25177-MS.

  8. 8 J.J. Debarbadillo and S.K. Mannan: Jom, 2012, vol. 64, pp. 265–70.

    CAS  Google Scholar 

  9. R.P. Gangloff: in Comprehensive structural integrity, I. Milne, R.O. Ritchie, B. Karihaloo, J. Petit, and P. Scott, eds., Elsevier Science, New York, NY, 2003, pp. 31–101.

  10. API Stand. 6A718 Third Ed., 2013, pp. 1–34.

  11. Rashimi, B., Bhavsar, P E., Collins, A., Silverma, S.: Superalloys 718, 625, 706 Var. Deriv., 2001, pp. 47–55.

  12. B. Kagay, K. Findley, S. Coryell, and A.B. Nissan: Mater. Sci. Technol., 2016, vol. 32, pp. 697–707.

    CAS  Google Scholar 

  13. R. Morana, L. Smith, and S.P. Venkateswaran: in Corrosion Conference & Expo 2019, NACE International, Nashville, TX, 2019, pp. 1–15.

  14. P.D. Hicks and C.J. Altstetter: in Superalloys 718, 625 and Various Derivatives, E.A. Loria, ed., TMS, 1991, pp. 635–51.

  15. Z. Zhang, G. Obasi, R. Morana, and M. Preuss: Acta Mater., 2016, vol. 113, pp. 272–83.

    CAS  Google Scholar 

  16. G.C. Obasi, Z. Zhang, D. Sampath, R. Morana, R. Akid, and M. Preuss: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1167–81.

    Google Scholar 

  17. Z.D. Harris, J.D. Dolph, G.L. Pioszak, B.C.R. Troconis, J.R. Scully, and J.T. Burns: Metall. Mater. Trans. A, pp. 11–3.

  18. B.C. Rincon Troconis, Z.D. Harris, H. Ha, J.T. Burns, and J.R. Scully: Mater. Sci. Eng. A, 2017, vol. 703, pp. 533–50.

  19. R.J. Coyle, J.A. Kargol, and N.F. Fiore: Metall. Trans. A, 1981, vol. 12, pp. 653–8.

    CAS  Google Scholar 

  20. T. Michler, J. Naumann, and M.P. Balogh: Mater. Sci. Eng. A, 2014, vol. 607, pp. 71–80.

    CAS  Google Scholar 

  21. S. Chen, M. Zhao, and L. Rong: Corros. Sci., 2015, vol. 101, pp. 75–83.

    CAS  Google Scholar 

  22. J. Chêne and A.M. Brass: Scr. Mater., 1999, vol. 40, pp. 537–42.

    Google Scholar 

  23. Z. Tarzimoghadam, M. Rohwerder, S. V. Merzlikin, A. Bashir, L. Yedra, S. Eswara, D. Ponge, and D. Raabe: Acta Mater., 2016, vol. 109, pp. 69–81.

    CAS  Google Scholar 

  24. L. Liu, K. Tanaka, A. Hirose, and K.F. Kobayashi: Sci. Technol. Adv. Mater., 2002, vol. 3, pp. 335–44.

    CAS  Google Scholar 

  25. L. Foroni and C. Malara: in Corrosion 2014, NACE International, San Antonio,TX, 2014, pp. 1–15.

  26. M.C. Rezende, L.S. Araujo, S.B. Gabriel, D.S. Santos, and L.H. De Almeida: Int. J. Hydrogen Energy, 2015, vol. 40, pp. 17075–83.

    CAS  Google Scholar 

  27. A. Turnbull, R.G. Ballinger, I.S. Hwang, and M.M. Morra: Metall. Trans., 1992, vol. 23, pp. 3231–44.

    Google Scholar 

  28. Z. Zhang, K. Moore, G. McMahon, R. Morana, and M. Preuss: Corros. Sci., 2019, vol. 146, pp. 58–69.

    CAS  Google Scholar 

  29. D.M. Symons: Eng. Fract. Mech., 2001, vol. 68, pp. 751–71.

    Google Scholar 

  30. Y. Ogawa, O. Takakuwa, S. Okazaki, K. Okita, and Y. Funakoshi: Corros. Sci., 2019, vol. 161, p. 108186.

    CAS  Google Scholar 

  31. R.G. Thompson, J.R. Dobbs, and D.E. Mayo: Weld. Res. Suppl., 1986.

  32. A. Oradei-Basile and J.F. Radavich: in Superalloys 718, 625 and Various Derivatives, E.A. Loria, ed., The Minerals, Metals and Materials Society, Pittsburgh, Pennsylvania, 1991, pp. 325–35.

  33. X. Xie, C. Xu, G. Wang, J. Dong, W. Cao, and R. Kennedy: in Superalloys 718, 625, 706 and derivatives 2005, E.A. Loria, ed., The MInerals, Metals, Metals and Materials Scociety, 2005, pp. 193–202.

  34. NACE International: TM0177-96, Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments, NACE International, 1996.

  35. BP Internal Report - BP Oil & Gas Exploration and Operating Company, Sunbury on Thames, U.K., 2014.

  36. D. Sampath, R. Akid, and R. Morana: Eng. Fract. Mech., 2018, vol. 191, pp. 324–43.

    Google Scholar 

  37. P.D. Hicks and C.J. Altstetter: Metall. Trans. A, 1992, vol. 23, pp. 237–49.

    Google Scholar 

  38. P.M. Mignanelli, N.G. Jones, E.J. Pickering, O.M.D.M. Messé, C.M.F. Rae, M.C. Hardy, and H.J. Stone: Scr. Mater., 2017, vol. 136, pp. 136–40.

    CAS  Google Scholar 

  39. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Acta Metall., 1988, vol. 36, pp. 847–64.

    CAS  Google Scholar 

  40. B.M.B. Grant, E.M. Francis, J. Quinta Da Fonseca, M.R. Daymond, and M. Preuss: Acta Mater., 2012, vol. 60, pp. 6829–41.

    CAS  Google Scholar 

  41. A. Devaux, L. Naz, R. Molins, A. Pineau, A. Organista, and J.F. Uginet: 2008, vol. 486, pp. 117–22.

  42. S. Mahadevan and S. Nalawade: 7th Int. Symp. Superalloys 718 Deriv., 2010, pp. 737–50.

  43. M. Jouiad, E. Marin, R.S. Devarapalli, J. Cormier, F. Ravaux, C. Le Gall, and J. Franchet: Mater. Des., 2016, vol. 102, pp. 284–96.

    CAS  Google Scholar 

  44. D. Delafosse: in Gaseous hydrogen embrittlement of materials in energy technologies, R.P. Gangloff and B.P. Somerday, eds., Woodhead Publishing Limited, 2014, pp. 247–85.

  45. J. Chêne and A.M. Brass: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2004, vol. 35 A, pp. 457–64.

  46. W. M. Robertson: Metall. Trans. A, 1977, vol. 8A, p. 1709.

    CAS  Google Scholar 

  47. L. Liu, C. Zhai, C. Lu, W. Ding, A. Hirose, and K.F. Kobayashi: Corros. Sci., 2005, vol. 47, pp. 355–67.

    CAS  Google Scholar 

  48. D. Bika and C.J. McMahon: Acta Metall., 1995, vol. 43, pp. 1909–16.

    CAS  Google Scholar 

  49. A.W. Thompson: Metall. Trans. A, 1979, vol. 10, pp. 727–31.

    Google Scholar 

  50. S.P. Lynch: Scr. Metall., 1986, vol. 20, pp. 1067–72.

    CAS  Google Scholar 

  51. S. Lynch: Corros. Rev., 2012, vol. 30, pp. 105–23.

    CAS  Google Scholar 

  52. N.R. Moody, R.E. Stoltz, and M.W. Perra: Metall. Trans. A, 1987, vol. 18, pp. 1469–82.

    Google Scholar 

  53. M. Ludwig, D. Farkas, M.I. Baskes, X. Sha, J.E. Angelo, and N.R. Moody: 1997, pp. 88–90.

  54. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum: Acta Mater., 1998, vol. 46, pp. 1749–57.

    CAS  Google Scholar 

  55. Z. Tarzimoghadam, D. Ponge, J. Kloewer, and D. Raabe: in CORROSION 2016, NACE International, 2016.

  56. A.M. Brass and J. Chene: Mater. Sci. Eng A, 1998, vol. 242, pp. 210–21.

    Google Scholar 

  57. T. Neeraj, R. Srinivasan, and J. Li: Acta Mater., 2012, vol. 60, pp. 5160–71.

    CAS  Google Scholar 

  58. L. Fournier, D. Delafosse, and T. Magnin: Mater. Sci. Eng. A, 1999, vol. 269, pp. 111–9.

    Google Scholar 

  59. W.W. Gerberich, R.A. Oriani, M. Lii, X. Chen, and T. Foecke: Philos. Mag. A, 1991, vol. 63, pp. 363–76.

    CAS  Google Scholar 

  60. H. Vehoff and H.-K. Klameth: Acta Metall., 1985, vol. 33, pp. 955–62.

    CAS  Google Scholar 

  61. M. Seita, J.P. Hanson, S. Gradecak, and M.J. Demkowicz: Nat Commun, 2015, vol. 6, p. 6164.

    CAS  Google Scholar 

  62. J.C. Stinville, N. Vanderesse, F. Bridier, P. Bocher, and T.M. Pollock: Acta Mater., 2015, vol. 98, pp. 29–42.

    CAS  Google Scholar 

  63. J.J.M. Jebaraj, D.J. Morrison, and I.I. Suni: Corros. Sci., 2014, vol. 80, pp. 517–22.

    CAS  Google Scholar 

  64. R.M. Latanision and M. Kurkela: Corrosion, 1983, vol. 39, pp. 174–81.

    CAS  Google Scholar 

  65. D.M. Symons: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1265–77.

    CAS  Google Scholar 

  66. J.M. Zagal, H.F. López, O. Flores, J.L. Albarran, and L. Martínez: Corros. Sci., 2008, vol. 50, pp. 3371–7.

    CAS  Google Scholar 

  67. H.K.D.H. Bhadeshia: ISIJ Int., 2016, vol. 56, pp. 24–36.

    CAS  Google Scholar 

  68. G.M. Pressouyre: Metall. Trans. A, 1979, vol. 10, pp. 1571–3.

    Google Scholar 

  69. A. Turnbull and M.W. Carroll: Corros. Sci., 1990, vol. 30, pp. 667–79.

    CAS  Google Scholar 

  70. N.R. Moody, S.L. Robinson, S.M. Myers, and F.A. Greulich: Acta Metall., 1989, vol. 37, pp. 281–90.

    CAS  Google Scholar 

  71. J.E. Angelo, S. Mater, and S. Eng: Model. Simul. Mater. Sci. Eng., 1995, vol. 3 289, p. 20.

    Google Scholar 

  72. J.H. Ai, H.M. Ha, R.P. Gangloff, and J.R. Scully: Acta Mater., 2013, vol. 61, pp. 3186–99.

    CAS  Google Scholar 

  73. J.E. Angelo, N.R. Moody, and M.I. Baskes: Model. Simul. Mater. Sci. Eng., 1995, vol. 3, pp. 289–307.

    CAS  Google Scholar 

  74. Y. Sakamoto and A. Miura: The Diffusion and Trapping of Hydrogen in Cold Worked Nickel, 1979.

  75. G.M. Pressouyre and I.M. Bernstein: Acta Metall., 1979, vol. 27, pp. 89–100.

    CAS  Google Scholar 

  76. S. Lee and J. Lee: Metall. Trans. A, 1986, vol. 17A, pp. 181–7.

    CAS  Google Scholar 

  77. G.A. Young and J.R. Scully: Scr. Mater., 1997, vol. 36, pp. 713–9.

    CAS  Google Scholar 

  78. A. Turnbull: Int. J. Hydrogen Energy, 2015, vol. 40, pp. 16961–70.

    CAS  Google Scholar 

  79. D. Li, R.P. Gangloff, and J.R. Scully: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2004, vol. 35 A, pp. 849–64.

  80. H. K. Birnbaum and P. Sofronis: Mater. Sci ence Eng. A, 1994, vol. 176, pp. 191–202.

    CAS  Google Scholar 

  81. F. Galliano, E. Andrieu, C. Blanc, J. Cloue, D. Connetable, and G. Odemer: Mater Sci Eng A, 2014, vol. 611, pp. 370–82.

    CAS  Google Scholar 

  82. M.C. Chaturvedi and Y.-F. Han: Met. Sci., 1983, vol. 17, pp. 145–9.

    Google Scholar 

  83. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. 176, pp. 191–202.

    CAS  Google Scholar 

  84. Y. Desvallees, M. Bouzidi, F. Bois, and N. Beaude: in Superalloys 718, 625, 706 and various derivatives, E.A. Loria, ed., TMS, 1994, pp. 281–91.

  85. J.R. Scully, H.R. Dogan, D.R. Li, and R.P. Gangloff: Corros. 2004, 2004, vol. 63, pp. 7–8.

  86. E. Martínez-pañeda, Z.D. Harris, S. Fuentes-alonso, J.R. Scully, and J.T. Burns: Corros. Sci., 2020, vol. 163, p. 108291.

    Google Scholar 

  87. D. Martelo, D. Sampath, A. Monici, R. Morana, and R. Akid: Eng. Fract. Mech., 2019, vol. 221, p. 106678.

    Google Scholar 

  88. M. Wang, E. Akiyama, and K. Tsuzaki: Mater. Sci. Eng. A, 2005, vol. 398, pp. 37–46.

    Google Scholar 

  89. M.M. Hall: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: Mechanisms, Modelling and Future Developments, Woodhead Publishing Limited, 2012, pp. 378–429.

  90. D. Martelo, R. Akid, and R. Morana: in BP-ICAM Project - Annual Report, BP-ICAM, University of Manchester, Manchester, UK, 2018, pp. 1–31.

  91. G.M. Pressouyre: Acta Metall., 1980, vol. 28, pp. 895–911.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the funding and technical support from BP through the BP International Centre for Advanced Materials (BP-ICAM) which made this research possible.

Funding

The work received funding from BP through the BP International Centre for Advanced Materials (BP-ICAM) under project ICAM-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhinakaran Sampath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 27, 2019; accepted September 27, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampath, D., Obasi, G., Morana, R. et al. Hydrogen-Assisted Cracking Behavior of Ni Alloy 718: Microstructure, H Testing Protocol, and Fractography. Metall Mater Trans A 52, 46–64 (2021). https://doi.org/10.1007/s11661-020-06049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06049-9

Navigation