Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Transient Plastic Flow and Phase Dissolution During Hot Compression of α/β Titanium Alloys

  • 8 Accesses


Transients in plastic flow behavior and the kinetics of dynamic dissolution of α particles were established via isothermal, hot compression testing of Ti-6Al-4V (Ti64) and Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti6242S). For this purpose, samples were preheated at a low subtransus temperature at which the volume fraction of α was ~ 0.90, heated at a fixed rate to one of two higher temperatures, held for a time between 0 and 900 seconds, and then upset to a 2:1 reduction using a strain rate of 0.01, 0.1, or 1 s−1. For a given alloy, test temperature, and strain rate, the flow stress decreased with increasing hold time. The observations were interpreted in terms of various models of plastic flow and microstructure evolution. The plastic-flow behavior of the two-phase microstructures was analyzed using approaches based on isostrain (upper-bound), self-consistent (SC), and isostress (lower-bound) approaches coupled with the measured (transient/non-equilibrium) phase fractions/phase compositions. The isostrain and SC methods both provided reasonable estimates of the observed flow stresses; the isostress method greatly under-predicted the measurements. Microstructure models comprised diffusion-based analyses of the dissolution of α particles into the β matrix both statically (during heating to test temperature and holding prior to deformation) and dynamically (during deformation). Static dissolution predictions showed good agreement with measurements. A comparison of static and dynamic dissolution behaviors revealed that concurrent deformation led to an enhancement of diffusion rates by a factor of approximately 8 or 4 for Ti64 and Ti6242S, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    T. Altan, F.W. Boulger, J.R. Becker, N. Akgerman, and H.J. Henning: Forging Equipment, Materials, and Practices. Report MCIC-HB-03, Metals and Ceramics Information Center, Battelle’s Columbus Laboratories, Columbus, OH, 1973.

  2. 2.

    A.M. Sabroff, F.W. Boulger, and H.J. Henning: Forging Materials and Practices, Rheinhold Book Company, New York, 1968.

  3. 3.

    T. Altan: Metal Forming: Fundamentals and Applications, American Society for Metals, Materials Park, OH, 1983.

  4. 4.

    D.D. Kautz: in ASM Handbook Volume 6A: Welding Fundamentals and Processes, ASM International, Materials Park, OH, 2011, pp. 179–85.

  5. 5.

    M.B. Uday, M.N. Ahmad Fauzi, H. Zuhailawati, and A.B. Ismail: Sci. Technol. Welding Joining, 2010, vol. 15, pp. 534–58.

  6. 6.

    A. Chamanfar, M. Jahazi, and J. Cormier: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1639-1669.

  7. 7.

    A.R. McAndrew, P.A. Colegrove, C. Buhr, B.C.D. Flipo, and A. Vairis: Prog. Mater. Sci., 2018, vol. 92, pp. 225-257.

  8. 8.

    L. Wang, M. Preuss, P.J. Withers, G. Baxter, and P. Wilson: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 513-523.

  9. 9.

    M. Maalekian: ISIJ Inter., 2008, vol. 48, pp. 1429-1433.

  10. 10.

    L.B. Yang, J.-C. Gebelin, and R.C. Reed: Mater. Sci. Techn., 2011, vol. 27, pp. 1249-1264.

  11. 11.

    O.N. Senkov, D.W. Mahaffey, S.L. Semiatin, and C. Woodward: Metall. and Mater. Trans. A, 2014, vol. 45A, pp. 5545-5561.

  12. 12.

    D.W. Mahaffey, O.N. Senkov, R. Shivpuri, and S.L. Semiatin: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3981-4000.

  13. 13.

    R. Turner, J.-C. Gebelin, R.M. Ward, and R.C. Reed: Acta Mater., 2011, vol. 59, pp. 3792-3803.

  14. 14.

    C. Buhr, P.A. Colegrove, and A.R. McAndrew: J. Mater. Proc. Techn., 2018, vol. 252, pp. 849-858.

  15. 15.

    A.R. McAndrew, P.A. Colegrove, A.C. Addison, B.C.D. Flipo, M.J. Russell, and L.A. Lee: Mater. and Design, 2015, vol. 87, pp. 1087-1099.

  16. 16.

    G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, eds.: Handbook of Workability and Process Design, ASM International, Materials Park, OH, 2003.

  17. 17.

    G. Shen, S.L. Semiatin, E. Kropp, and T. Altan: J. Mat. Proc. Tech., 1992, vol. 33, pp. 125-139.

  18. 18.

    P.D. Nicolaou, R.E. Bailey, and S.L. Semiatin: in Handbook of Workability and Process Design, G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2003, pp. 68–85.

  19. 19.

    H.G. Suzuki and H. Fujii: ISIJ Inter., 1991, vol. 31, pp. 814-819.

  20. 20.

    H.G. Suzuki and D. Eylon: ISIJ Inter., 1993, vol. 33, pp. 1270-1274.

  21. 21.

    H.G. Suzuki and D. Eylon: Mater. Sci. Eng. A, 1998, vol. A243, pp. 126-133.

  22. 22.

    F.F. Noecker II and J.N. DuPont: Weld. J., 2009, vol. 88 (#1), pp. 7s–20s.

  23. 23.

    S. Shi, J.C. Lippold, and J. Ramirez: Weld. J., 2010, vol. 89 (#10), pp. 210s–17s.

  24. 24.

    S.S. Babu, J. Livingston, and J.C. Lippold: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3577-3591.

  25. 25.

    M. Saby, E. Massoni, and N. Bozzolo: Mater. Charact., 2014, pp. 88–92.

  26. 26.

    S.L. Semiatin, F. Montheillet, G. Shen, and J.J. Jonas: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2719-2727.

  27. 27.

    P. Vo, M. Jahazi, S. Yue, and P. Bocher: Mater. Sci. Eng. A, 2007, vol. A447, pp. 99-110.

  28. 28.

    L. Briottet, J.J. Jonas, and F. Montheillet: Acta Mater., 1996, vol. 44, pp. 1665-1672.

  29. 29.

    S.L. Semiatin, M. Obstalecki, E.J. Payton, A.L. Pilchak, P.A. Shade, N.C. Levkulich, J.M. Shank, D.C. Pagan, F. Zhang, and J.S. Tiley: Metall. Mater. Trans. A, 2019, vol.50A, pp. 2356-2370.

  30. 30.

    S.L. Semiatin, T.M. Lehner, J.D. Miller, R.D. Doherty, and D.U. Furrer: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 910-921.

  31. 31.

    R. Castro and L. Seraphin: Mém. Sci. Rev. Metall., 1966, vol. 63, pp. 1025-1058.

  32. 32.

    S.I. Oh, S.L. Semiatin, and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 963-975.

  33. 33.

    S.L. Semiatin, N.C. Levkulich, A.R.C. Gerlt, E.J. Payton, J.S. Tiley, F. Zhang, R.A. MacKay, R.V. Miner, and T.P. Gabb: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2289- 2301.

  34. 34.

    H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, 1982.

  35. 35.

    S.L. Semiatin, T.M. Brown, T.A. Goff, P.N. Fagin, D.R. Barker, R.E. Turner, J.M. Murry, J.D. Miller, and F. Zhang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3015-3018.

  36. 36.

    B. Guo, S.L. Semiatin, J. Lian, B. Sun, and J.J. Jonas: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1450-1454.

  37. 37.

    M.J. Whelan: Metal Sci. Journal, 1969, vol. 3, pp. 95-97.

  38. 38.

    H.B. Aaron and G.R. Kotler: Metall. Trans., 1971, vol. 2, pp. 393-408.

  39. 39.

    H.B. Aaron and G.R. Kotler: Metal Sci. Journal, 1970, vol. 4, 222-225.

  40. 40.

    S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang, and D.R. Barker: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2377-2386.

  41. 41.

    R.D. Doherty: in Physical Metallurgy, R.W. Cahn and P. Haasen, eds., North-Holland, Amsterdam, 1996, ch. 15.

  42. 42.

    I. Weiss and J.J. Jonas: Metall. Trans. A, 1979, vol. 10A, pp. 831–40.

Download references


This work was conducted as part of the in-house research of the Metals Branch of the Air Force Research Laboratory’s Materials and Manufacturing Directorate. The support and encouragement of the laboratory management is much appreciated. The outstanding assistance of P.N. Fagin and J.M. Shank in conducting the experiments is also gratefully acknowledged. Two of the authors were supported under the auspices of contracts FA8650-15-D-5230 (NCL) and FA8650-14-2-5800 (CAH).

Author information

Correspondence to S. L. Semiatin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 8, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Semiatin, S.L., Levkulich, N.C., Heck, C.A. et al. Transient Plastic Flow and Phase Dissolution During Hot Compression of α/β Titanium Alloys. Metall and Mat Trans A (2020).

Download citation