Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Role of Silicon Morphology in the Electrical Conductivity and Mechanical Properties of As-Cast B319 Aluminum Alloy

Abstract

The enhanced performance of automotive B319 aluminum alloys can be realized via the improvement of both strength and conductivity. Yet, vastly dissimilar mechanisms are responsible for each property, and the incomplete understanding of their respective dominant microstructural features impedes effective alloy design. In this study, permanent mold cast B319 alloy was systematically produced with total solidification rates between 0.14 and 5.89 °C s−1 and strontium contents up to 300 ppm to isolate their respective effects on material properties. The as-cast samples were characterized by their dendritic structure, eutectic silicon morphology, porosity content, hardness, tensile strength, ductility, and electrical conductivity. With increasing solidification rate, the refinement of microstructure considerably improved all mechanical properties analyzed. Nonetheless, these properties were found to be independent of strontium content, attributed to the role of the coarse and brittle intermetallic phases in fracture initiation. In contrast, conductivity was minimally affected by solidification rate in the unmodified condition. However, the synergistic silicon modification promoted by increasing both solidification rate and strontium enhanced conductivity by up to 3 pct IACS. The correlations developed with the quantified silicon characteristics establish this phase as dominant in the conductivity of B319 alloy, and they elucidate opportunities for the further enhancement of automotive materials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

Additional raw/processed data required to reproduce these findings cannot be shared at this time, as the data also form part of an ongoing study.

References

  1. 1.

    W. Callister and G. Rethwisch: Materials Science and Engineering: An Introduction, 9th ed., Wiley, New York, 2013.

  2. 2.

    [2] R. Lumley, N. Deeva, R. Larsen, J. Gembarovic and J. Freeman: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1074-1086.

  3. 3.

    [3] F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E. Pinatel and P. Uggowitzer: Mater. Sci. Eng. A, 2013, vol. 560, pp. 481-491.

  4. 4.

    [4] M. Mulazimoglu, R. Drew and J. Gruzleski: Metall. Trans. A, 1989, vol. 20A, pp. 383-389.

  5. 5.

    [5] M. Mulazimoglu, R. Drew and J. Gruzleski: J. Mater. Sci. Lett., 1989, vol. 8, pp. 297-300.

  6. 6.

    [6] H. Wang and S. Lo: J. Mater. Sci. Lett., 1996, vol. 15, pp. 369-371.

  7. 7.

    [7] R. Lumley, I. Polmear, H. Groot and J. Ferrier: Scripta Mater., 2008, vol. 58, pp. 1006-1009.

  8. 8.

    [8] E. Vandersluis and C. Ravindran: J. Mater. Sci., 2019, vol. 54, no. 5, pp. 4325-4339.

  9. 9.

    [9] E. Vandersluis and C. Ravindran: J. Mater. Eng. Perform., 2018, vol. 27, no. 3, pp. 1109-1121.

  10. 10.

    [10] E. Vandersluis, A. Lombardi, C. Ravindran, A. Bois-Brochu, F. Chiesa and R. MacKay: Mater. Sci. Eng. A, 2015, vol. 648, pp. 401-411.

  11. 11.

    [11] R. Sharma: Phase Transformations in Materials, CBS Publishers and Distributors, New Delhi, 2002.

  12. 12.

    [12] E. Vandersluis and C. Ravindran: JOM, 2019, vol. 71, pp. 2072-2077.

  13. 13.

    [13] G. Sigworth: AFS Trans., 2008, vol. 19, pp. 115-139.

  14. 14.

    [14] E. Vandersluis, D. Sediako, C. Ravindran, A. Elsayed and G. Byczynski: J. Alloys Compd., 2018, vol. 736, pp. 172-180.

  15. 15.

    [15] M. Makhlouf and H. Guthy: J. Light Met., 2001, vol. 1, pp. 199-218.

  16. 16.

    S. Hegde, K. NarayanPrabhu: J. Mater. Sci., 2008, vol. 43, pp. 3009-3027.

  17. 17.

    [17] F. Zu and X. Li: China Foundry, 2014, vol. 11, no. 4, pp. 287-295.

  18. 18.

    [18] S. D. McDonald, A. K. Dahle, J. A. Taylor and D. H. StJohn: Metall. Mater. Trans. A, 2004, vol. 35, no. 6, pp. 1829-1837.

  19. 19.

    [19] K. Nogita and A. Dahle: Mater. Trans., 2001, vol. 42, no. 3, pp. 393-396.

  20. 20.

    [20] S. Joseph and S. Kumar: Mater. Sci. Eng. A, 2013, vol. 588, pp. 111-124.

  21. 21.

    [21] M. Hafiz and T. Kobayashi: Scr. Metall. Mater., 1994, vol. 30, pp. 475-480.

  22. 22.

    M. Zamani: Al-Si Cast Alloys—Microstructure and Mechanical Properties at Ambient and Elevated Temperatures, JTH Dissertation Series, Jönköping, 2015.

  23. 23.

    [23] S. Shaha, F. Czerwinski, W. Kasprzak, J.Friedman and D. Chen: Mater. Sci. Eng. A, 2016, vol. 657, pp. 441-452.

  24. 24.

    [24] M. Riestra, E. Ghassemali, T. Bogdanoff and S. Seifeddine, Mater. Sci. Eng. A, 2017, vol. 703, pp. 270-279.

  25. 25.

    K. NarayanPrabhu and B. Ravishankar: Mater. Sci. Eng. A, 2003, vol. 360, pp. 293-298.

  26. 26.

    [26] M. Mulazimoglu, R. Drew and J. Gruzleski: Metall. Trans. A, 1987, vol. 18A, pp. 941-947.

  27. 27.

    [27] B. Closset, K. Pirie and J. Gruzleski: AFS Trans., 1984, vol. 92, pp. 123-133.

  28. 28.

    [28] H. Oger, B. Closset and J. Gruzleski: AFS Trans., 1983, vol. 91, pp. 17-20.

  29. 29.

    [29] M. Djurdjevic, H. Jiang and J. Sokolowski: Mater. Charact., 2001, vol. 46, pp. 31-38.

  30. 30.

    E. Vandersluis, N. Prabaharan, and C. Ravindran: Int. J. Metalcast., 2020, vol. 14 (1), pp. 37–46.

  31. 31.

    [31] E. Vandersluis and C. Ravindran: Trans. Indian Inst. Met., 2018, vol. 71, pp. 1231-1236.

  32. 32.

    [32] S. Eguskiza, A. Nikla, A. I. Fernández-Calvo, F. Santos and M. Djurdjevic: Int. J. Metalcast, 2015, vol. 9, pp. 43-50.

  33. 33.

    E. Vandersluis, C. Ravindran: Metallogr. Microstruct. Anal., 2017, vol. 6, pp. 89-94.

  34. 34.

    [34] J. Davis, Ed.: ASM Specialty Handbook: Aluminum and aluminum alloys, ASM International, Materials Park, 1993.

  35. 35.

    ASTM B557: Standard Test Methods for Tension Testing Wrought and Cast Aluminum, ASTM International, West Conshohocken, 2014.

  36. 36.

    ASTM E1004: Standard Test Method for Determining Electrical Conductivity Using the Electromagnetic (Eddy Current) Method, ASTM International, West Conshohocken, 2017.

  37. 37.

    [37] M. Easton, C. Davidson and D. StJohn: Mater. Trans., 2011, vol. 52, no. 5, pp. 842-847.

  38. 38.

    [38] N. Tiedje, J. Taylor and M. Easton: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4846-4858.

  39. 39.

    A. Knuutinen, K. Nogita, S. McDonald. J. Light Met., 2001, vol. 1, pp. 241-249.

  40. 40.

    [40] X. Bian, Z. Zhang and X. Liu: Mater. Sci. Forum, 2000, vols. 331-337, pp. 361-366.

  41. 41.

    [41] E. Ghassemali, M. Riestra, T. Bogdanoff, B. Kumar and S. Seifeddine: Procedia Eng., 2017, vol. 207, pp. 19-24.

  42. 42.

    [42] N. Fatahalla, M. Hafiz and M. Abdulkhalek: J. Mater. Sci., 1999, vol. 34, pp. 3555-3564.

  43. 43.

    [43] M. Zamani and S. Seifeddine: Int. J. Metalcast., 2016, vol. 10, pp. 457-465.

  44. 44.

    [44] A. Samuel, H. Doty, S. Valtierra, and F. Samuel: Int. J. Metalcast., 2017, vol. 11, pp. 475-493.

  45. 45.

    [45] T. Anderson: Fracture Mechanics: Fundamentals and Applications, 3rd ed., Taylor & Francis Group, Boca Raton, 2005.

  46. 46.

    A. Mohamed, F. Samuel and S. Alkahtani: Mater. Sci. Eng. A, 2013, vol. 577, pp. 64-72.

  47. 47.

    [47] A. Lombardi, F. D’Elia, C. Ravindran, B. Murty and R. MacKay: Trans. Indian Inst. Met., 2011, vol. 64, pp. 7-11.

  48. 48.

    [48] S. Shabestari and S. Ghodrat: Mater. Sci. Eng. A, 2007, vol. 467, pp. 150-158.

  49. 49.

    [49] D. Argo, R. Drew and J. Gruzleski: AFS Trans., 1987, vol. 95, pp. 455-464.

  50. 50.

    L. Arnberg and L. Bäckerud: Solidification Characteristics of Aluminum Alloys Volume 3: Dendrite Coherency, American Foundrymen’s Society, Inc., Des Plaines, 1996.

  51. 51.

    [51] J. Li, M. Albu, F. Hofer and P. Schumacher: Acta Mater., 2015, vol. 83, pp. 187-202.

  52. 52.

    [52] J. Barrirero, J. Li, M. Engstler, N. Ghafoor, P. Schumacher, M. Odén and F. Mücklich: Scr. Mater., 2016, vol. 117, pp. 16-19.

  53. 53.

    [53] E. Vandersluis, D. Sediako, P. Emadi, C. Ravindran, A. Elsayed and G. Byczynski: J. Appl. Crystallogr., 2018, vol. 51, pp. 1141-1150.

  54. 54.

    [54] J. Gruzleski: Microstructure Development During Metalcasting, American Foundrymen’s Society, Inc., Des Plaines, 2000.

  55. 55.

    [55] V. Páramo, R. Colás, E. Velasco and S. Valtierra: J. Mater. Eng. Perform., 2000, vol. 9, pp. 616-622.

  56. 56.

    [56] E. Ogris, A. Wahlen, H. Lüchinger and P. Uggowitzer: J. Light Met., 2002, vol. 2, pp. 263-269.

  57. 57.

    [57] R. Wang and W. Lu: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2799-2809.

  58. 58.

    [58] X. Jian, C. Xu, T. Meek and Q. Han: AFS Trans., 2005, vol. 113, pp. 131-138.

Download references

Acknowledgments

The authors are thankful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support of this project and for the award of the Canada Graduate Scholarship to Eli Vandersluis (Grant Number CGSD3-489708-2016). The authors are grateful to Alan Machin, Michael Rinaldi, Qiang Li, and the members of the Centre for Near-net-shape Processing of Materials (CNPM) at Ryerson University for experimental assistance and support.

Author information

Correspondence to Eli Vandersluis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 16, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vandersluis, E., Emadi, P., Andilab, B. et al. The Role of Silicon Morphology in the Electrical Conductivity and Mechanical Properties of As-Cast B319 Aluminum Alloy. Metall and Mat Trans A (2020). https://doi.org/10.1007/s11661-020-05650-2

Download citation