Micro-abrasive Wear Behavior of Nitrided and Multilayer Coated High Vanadium Powder Metallurgy Alloy

  • E. A. dos S. de AlmeidaEmail author
  • B. F. Zappelino
  • R. K. Salvador
  • F. Correa
  • B. Nunes
  • A. P. Krelling
  • C. E. da Costa
  • J. C. G. Milan


The micro-abrasive behavior of plasma nitrided Vanadis 10, a high vanadium powder metallurgy alloy, combined with TiCN/AlTiN/CrAlTiN/CrN multilayer film was evaluated and compared with different treatment conditions. Microstructural evolution with treatments was evaluated. The tribological behavior was accessed using the fixed ball micro-abrasion test and SiC as abrasive. The counter-body was an AISI 52100 steel sphere (Ø 25.4 mm), the SiC abrasive slurry concentration was 0.50 g/cm3, the rotary speed was set at 75 rpm, and the applied load was 0.49 N. The wear crater was characterized by scanning electron microscopy (SEM). Results indicated that the film is effective in reducing the wear coefficient in more than 80 pct for all conditions compared with Vanadis 10. Nitriding treatments impaired the samples’ wear resistance because of the presence of cracks in this layer. Sliding/grooving abrasion was observed for the conditions with higher wear coefficients. The change in the micro-abrasion wear mechanism from grooving abrasion to rolling abrasion is attributed to the protection of the surface by the hard multilayer coating, producing a reduction in the wear coefficient.



The authors appreciate the financial support from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil)—Finance Code 001 and Brasimet for the coating deposition.


  1. 1.
    [1] S. Gimenez, C. Zubizarreta, V. Trabadelo, I. Iturriza: Mater Sci Eng A, 2008, vol. 480, pp. 130-37.CrossRefGoogle Scholar
  2. 2.
    O. Grinder: Met. Powder Rep., 2007, pp. 16–22.Google Scholar
  3. 3.
    M.A.S.B.A. Rahim, M.B. Minhat, N.I.S.B. Hussein, M.S.B. Salleh: Metall. Res. Technol., 2018, vol. 115, pp. 1–12.Google Scholar
  4. 4.
    [4] J. Ptačinová, V. Sedlická, M. Hudáková, I. Dlouhýb, P. Jurči: Mater. Sci. Eng. A., 2017, vol. 702, pp. 241-58.CrossRefGoogle Scholar
  5. 5.
    [5] P. Jurči, M. Dománková, L. Caplovič, J. Ptačinová, J. Sobotova, P. Salabová, O. Prikner, B. Šuštaršič, D. Jenko: Vacuum, 2015, vol. 111, pp. 92-101.CrossRefGoogle Scholar
  6. 6.
    [6] P. Jurči, M. Dománková, M. Hudáková, J. Ptačinová, M. Pašák, P. Palček: Mater Charact, 2017, vol. 134, pp. 398-415.CrossRefGoogle Scholar
  7. 7.
    [7] F.K. Arslan, I. Altinsoy, A. Hatman, M. Ipek, S. Zeytin, C. Bindal: Vacuum, 2011, vol. 86, pp. 370-73.CrossRefGoogle Scholar
  8. 8.
    [8] S. Chander, V. Chawla: Asian Journal of Engineering and Applied Technology, 2016, vol. 5 (1), pp. 23-28.Google Scholar
  9. 9.
    [9] P. Jurči, J. Suchánek, M. Hudáková, P. Panjan, L.R. Trnková: Materials Engineering, 2015, vol. 22, pp. 126-39.Google Scholar
  10. 10.
    K.L. Rutherford, I.M. Hutchings: J. Test. Eval., 1997, vol. 25 (2), pp. 250-60.CrossRefGoogle Scholar
  11. 11.
    [11] A.J. Gant, M.G. Gee: Appl Phys, 2011, vol. 4, pp. 1-15.Google Scholar
  12. 12.
    [12] J.C.A. Batista, C. Godoy, A..Matthews: Tribol Int, 2002, vol. 35, pp. 363-72.CrossRefGoogle Scholar
  13. 13.
    [13] K.I. Schiffmann, R. Bethke, N. Kristen: Surf Coat Technol, 2005, vol. 200, pp. 2348–57.CrossRefGoogle Scholar
  14. 14.
    E.A.S. de Almeida, A.P. Krelling, J.C.G. Milan, C.E. da Costa: Surf Coat Technol, 2018, vol. 333, pp. 238-46.CrossRefGoogle Scholar
  15. 15.
    [15] R. Trezona, I. Hutchings: Wear, 1999, vol. 233-235, pp. 209–21.CrossRefGoogle Scholar
  16. 16.
    [16] Y. Kusano, K. Van Acker, I.M. Hutchings: Surf Coat Technol, 2004, vol. 183, pp. 312–27.CrossRefGoogle Scholar
  17. 17.
    H.L. Costa, M.A. Ardila, W.S. Labiapari, W.M. Silva, J.D.B. de Mello: Wear, 2015, vol. 324-325, pp. 129–39.CrossRefGoogle Scholar
  18. 18.
    [18] R.C. Cozza: Tribol Int, 2013, vol. 57, pp. 266-71.CrossRefGoogle Scholar
  19. 19.
    [19] P. Bílek, J. Sobotová, P. Jurči: Mater technol, 2011, vol. 45 (5), pp. 489-93.Google Scholar
  20. 20.
    [20] H. Takikawa, H.Tanoue: Transactions on Plasma Science, 2007, vol. 35 (4), pp. 992-99.CrossRefGoogle Scholar
  21. 21.
    [21] M. Berg, C.V. Budtz-Jørgensen, H. Reitz, K.O. Schweitz, J. Chevallier, P. Kringhøja, J. Bøttiger: Surf Coat Technol, 2000, vol. 124, pp. 25-31.CrossRefGoogle Scholar
  22. 22.
    [22] A. Selte, B. Özkal, K. Arslan, S. Ülker, A. Hatman: Met Sci and Heat Treat, Mar 2018, vol. 59 (11-12), pp. 729-34.CrossRefGoogle Scholar
  23. 23.
    [23] R.M.M. Riofano, L.C. Casteletti, P.A.P. Nascente: Surf Coat Technol, 2006, vol. 200, pp. 6101-110.CrossRefGoogle Scholar
  24. 24.
    [24] R.M.M. Riofano, L.C. Casteletti, L.C.F. Canale, G.E. Totten: Wear, 2008, vol. 265, pp. 57-64.CrossRefGoogle Scholar
  25. 25.
    E.A. dos S. de Almeida, J.C.G. Milan, H. L. Costa, A.P. Krelling, C.E. da Costa: Wear, 2018, vol. 410–411, pp. 11–24.CrossRefGoogle Scholar
  26. 26.
    [26] R.P. Martinho, M.F.C. Andrade, F.J.G. Silva, R.J.D. Alexandre, A.P.M. Baptista: Wear, 2009, vol. 267, pp. 1160-65.CrossRefGoogle Scholar
  27. 27.
    [27] I.M. Hutchings: Tribology - Friction and Wear of Engineering Materials, Edward Arnold, London, 1992.CrossRefGoogle Scholar
  28. 28.
    [28] A.P. Krelling, C.E. da Costa, J.C.G. Milan, E.A.S. Almeida: Tribol Int, 2017, vol. 111, pp. 234-42.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2020

Authors and Affiliations

  1. 1.Universidade do Estado de Santa Catarina (UDESC)JoinvilleBrazil
  2. 2.Instituto Federal de Santa Catarina (IFSC)JoinvilleBrazil

Personalised recommendations