Influence of Post-deposition Heat Treatments on the Microstructure and Mechanical Properties of Wire–Arc Additively Manufactured ATI 718Plus

  • O. OguntuaseEmail author
  • O. A. Ojo
  • J. Beddoes


To maximize the benefits of additive manufacturing (AM) processes, optimizing the as-processed microstructure and its associated mechanical properties through post-deposition heat treatment is important. The present study investigates the influence of post-deposition heat treatments on the microstructure and mechanical properties of wire–arc additively manufactured (WAAM) ATI 718Plus. The application of the standard heat treatment recommended for the wrought ATI 718Plus led to the formation of excessive eta (η) phase particles along the interdendritic spaces. This microstructure degrades the tensile properties of the WAAM condition and exhibits a profound anisotropic effect. To enhance the microstructure for improved properties, the nature of the submicron-sized particles that formed within the microstructure is identified. Experimental and thermodynamic simulation tools are utilized to develop time–temperature-transformation (TTT) diagrams, and the growth kinetics of η phase in the WAAM ATI 718Plus is determined. Based on the analyses, appropriate heat treatments capable of precipitating a moderate amount of η phase are designed and evaluated. The newly developed heat treatment significantly improves the mechanical properties of the AM alloy and reduces the anisotropic effect.



The authors gratefully acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada.


  1. 1.
    X. Xu, S. Ganguly, J. Ding, C.E. Seow, and S. Williams: Mater. Des., 2018, vol. 160, pp. 1042–51.CrossRefGoogle Scholar
  2. 2.
    D. Ding, Z. Pan, D. Cuiuri, and H. Li: Int. J. Adv. Manuf. Technol., 2015, vol. 81, pp. 465–81.CrossRefGoogle Scholar
  3. 3.
    M.U. B. Peterson, D. Frias, D. Brayshaw, R. Helmink, S. Oppenheimer, E. Ott, R. Benn: in 12th International Symposium on Superalloys, 2012, pp. 787–94.Google Scholar
  4. 4.
    R.L. Kennedy: Superalloys 718, 625, 706 Deriv., E. A. Loria, ed., 2005, pp. 1–14.Google Scholar
  5. 5.
    M. Wang, Q. Deng, J. Du, Z. Tian, and J. Zhu: Mater. Trans., 2015, vol. 56, pp. 635–41.CrossRefGoogle Scholar
  6. 6.
    E. J. Pickering, H. Mathur, A. Bhowmik, O.M.D.M. Messe, J.S. Barnard, M.C. Hardy, R. Krakow, K. Loehnert, H.J. Stone, and C.M.F. Rae: Acta Mater., 2012, vol. 60, pp. 2757–69.CrossRefGoogle Scholar
  7. 7.
    R.K.X. Xie, G. Wang, J. Dong, C. Xu, W. Cao: Superalloys 718, 625, 706 Deriv., E. A. Loria, ed., 2005, pp. 179–91.Google Scholar
  8. 8.
    M. Wang, J. Du, Q. Deng, Z. Tian, and J. Zhu: J. Alloys Compd., 2017, vol. 701, pp. 635–44.CrossRefGoogle Scholar
  9. 9.
    G. Asala, J. Andersson, and O.A. Ojo: Mater. Sci. Eng. A, 2018, vol. 738, pp. 111–124.CrossRefGoogle Scholar
  10. 10.
    C.E. Seow, H.E. Coules, G. Wu, R.H.U. Khan, X. Xu, and S. Williams: Mater. Des., 2019, vol. 183, p. 108157.CrossRefGoogle Scholar
  11. 11.
    G. Asala, A.K. Khan, J. Andersson, and O.A. Ojo: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4211–28.CrossRefGoogle Scholar
  12. 12.
    L.D.C. P. A. Colegrove, H. E. Coules, J. Fairman, F. Martina, T. Kashoob, H. Mamash: J. Mater. Process. Technol., 2013, vol. 213, pp. 1782–91.CrossRefGoogle Scholar
  13. 13.
    F. Zhang, L. E. Levine, A.J. Allen, M.R. Stoudt, G. Lindwall, E.A. Lass, M.E. Williams, Y. Idell, and C.E. Campbell: Acta Mater., 2018, vol. 152, pp. 200–14.CrossRefGoogle Scholar
  14. 14.
    Y. L. Kuo, S. Horikawa, and K. Kakehi: Mater. Des., 2017, vol. 116, pp. 411–8.CrossRefGoogle Scholar
  15. 15.
    M.R. Stoudt, E.A. Lass, D.S. Ng, M.E. Williams, F. Zhang, and C.E. Campbell: Metall. Mater. Trans., 2018, vol. 49A, pp. 3028–37.CrossRefGoogle Scholar
  16. 16.
    X. Li, J.J. Shi, G.H. Cao, A.M. Russell, Z.J. Zhou, C.P. Li, and G.F. Chen (2019) Mater. Des. 10.1016/j.matdes.2019.107915CrossRefGoogle Scholar
  17. 17.
    G. A. Rao, M. Kumar, M. Srinivas, and D. S. Sarma: Mater. Sci. Eng. A, 2003, vol. 355, pp. 114–25.CrossRefGoogle Scholar
  18. 18.
    D. Zhang, W. Niu, X. Cao, and Z. Liu: Mater. Sci. Eng. A, 2015, vol. 644, pp. 32–40.CrossRefGoogle Scholar
  19. 19.
    S. Raghavan, B. Zhang, P. Wang, C. Sun, M. L. S. Nai, T. Li, and J. Wei: Mater. Manuf. Process., 2016, vol. 32, pp. 1–8.Google Scholar
  20. 20.
    X. You, Y. Tana, S. Shia, J. Yang, Y. Wang, J. Lia, and Q. You: Mater. Sci. Eng. A, 2017, vol. 689, pp. 257–68.CrossRefGoogle Scholar
  21. 21.
    H. Qi, M. Azer, and A. Ritter: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2410–22.CrossRefGoogle Scholar
  22. 22.
    T. Raza, J. Andersson, and L.-E. Svensson: Procedia Manuf., 2018, vol. 25, pp. 450–8.CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, L. Yang, T. Chen, W. Zhang, X. Huang, and J. Dai: Opt. Laser Technol., 2017, vol. 97, pp. 172–9.CrossRefGoogle Scholar
  24. 24.
    Y. Idell, L.E. Levine, A.J. Allen, F. Zhang, C.E. Campbell, G.B. Olson, J. Gong, D.R. Snyder, and H.Z. Deutchman: Jom, 2016, vol. 68, pp. 950–9.CrossRefGoogle Scholar
  25. 25.
    D. Ding, Z. Pan, D. Cuiuri: Robot. Comput. Integr. Manuf., 2015, vol. 31, pp. 101–10.CrossRefGoogle Scholar
  26. 26.
    ASTM, 2010, vol. 7, pp. 4–7.Google Scholar
  27. 27.
    W. Cao: in Superalloys 2008 TMS, 2008, pp. 789–97.Google Scholar
  28. 28.
    M. Anderson, A.-L. Thielin, F. Bridier, P. Bocher, and J. Savoie: Mater. Sci. Eng. A, 2017, vol. 679, pp. 48–55.CrossRefGoogle Scholar
  29. 29.
    G. Asala, J. Andersson, and O.A. Ojo: Int. J. Adv. Manuf. Technol., 2016, vol. 87, pp. 2721–9.CrossRefGoogle Scholar
  30. 30.
    W.D. Cao: Superalloys 718, 625, 706 Var. Deriv., 2005, pp. 165–77.Google Scholar
  31. 31.
    D. Srinivasan, L.U. Lawless, and E.A. Ott: in 12th International Symposium on Superalloys, 2012, pp. 759–68.Google Scholar
  32. 32.
    T. Keller, G. Lindwall, S. Ghosh, L. Ma, B.M. Lane, F. Zhang, U.R. Kattner, E.A. Lass, J.C. Heigel, Y. Idell, M.E. Williams, A.J. Allen, J.E. Guyer, and L.E. Levine: 2017, Acta Mater. vol. 139, pp. 244–53.CrossRefGoogle Scholar
  33. 33.
    E. A. Lass, M. R. Stoudt, M. E. Williams, M. B. Katz, L. E. Levine, T. Q. Phan, T. H. Gnaeupel-Herold, and D. S. NG: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5547–58.CrossRefGoogle Scholar
  34. 34.
    G. Lindwall, C.E. Campbell, E.A. Lass, F. Zhang, and M.R. Stoudt: Metall. Mater. Trans. A, 2019, vol. 50, pp. 457–67.CrossRefGoogle Scholar
  35. 35.
    Y.L. Kuo, T. Nagahari, and K. Kakehi: Materials (Basel)., 2018, vol. 11, pp. 1–13.Google Scholar
  36. 36.
    K. Löhnert and F. Pyczak: in 7th International Symposium on Superalloy 718 and Derivatives, 2010, pp. 877–91.Google Scholar
  37. 37.
    D. Deng, J. Moverare, R.L. Peng, and H. Söderberg: Mater. Sci. Eng. A, 2017, vol. 693, pp. 151–63.CrossRefGoogle Scholar
  38. 38.
    A. Strondl, M. Palm, J. Gnauk, and G. Frommeyer: Mater. Sci. Technol., 2011, vol. 27, pp. 876–83.CrossRefGoogle Scholar
  39. 39.
    D. Deng, R.L. Peng, H. Brodin, and J. Moverare: Mater. Sci. Eng. A, 2018, vol. 713, pp. 294–306.CrossRefGoogle Scholar
  40. 40.
    M. Wang, Q. Deng, J. Du, Z. Tian, and J. Zhu: in 8th International Symposium on Superalloy 718 and Derivatives 2014, 2014, pp. 769–76.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2020

Authors and Affiliations

  1. 1.University of ManitobaWinnipegCanada

Personalised recommendations