Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Excess Solute Carbon and Tetragonality in As-Quenched Fe-1Mn-C (C:0.07 to 0.8 Mass Pct) Martensite

Abstract

The carbon distribution behavior and crystal structure of as-quenched martensite in Fe-1Mn-C (C: 0.07 to 0.8 mass pct) steels were quantitatively investigated by atom probe tomography (APT) and X-ray diffraction with Rietveld analysis. APT revealed that the martensite steels contained quantities of carbon in solid solution far beyond its solubility in body-centered cubic (bcc)-Fe in all the alloys investigated; the carbon atoms were non-homogeneously distributed as carbides or aggregates on dislocations due to autotempering. Tetragonality was observed in the steels with interstitial solute carbon concentrations in the range of 0.1 to 0.7 mass pct, but was not evident below 0.1 mass pct. The appearance and disappearance of tetragonality in the low-carbon steels may be explained by the disordered bcc ↔ ordered body-centered tetragonal (bct) mechanism, considering the partial tetragonality due to the heterogeneity of the interstitial solute carbon distribution. The existence of tetragonality in the autotempered low-carbon steels can alternatively be understood by a mechanism based on the kinetic decrease of tetragonality during cooling, where the microscopic strain release is the rate-controlling process. The excess carbon solubility in the autotempered low- and medium-carbon martensite is due to the existence of tetragonal distortions, owing to the slow kinetics of the tetragonality decrease during cooling.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    K. Honda, Z. Nishiyama: Sci. Rep. Tohoku Imp. Univ., 1932, vol. 21, pp. 299-331

  2. 2.

    P.M. Kelly: in E. Pereloma and D.V. Edmonds (Eds.), Phase Transformations in Steels, Volume 2: Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques, Woodhead Publishing Limited, 2012, p. 12.

  3. 3.

    H.K.D.H. Bhadeshia and R. Honeycombe: Steels—Microstructure and Properties, 2nd ed., Butterworth-Heinemann, 2017, pp. 142–44.

  4. 4.

    C. Zener: Trans. AIME, 1946, vol. 167, pp. 550-95

  5. 5.

    G.V. Kurdjumov, A.G. Khachaturyan: Metall. Trans., 1972, vol. 3, pp. 1069-76

  6. 6.

    G.V. Kurdjumov, A.G. Khachaturyan: Acta Metall., 1975, vol. 23, pp. 1077-88

  7. 7.

    O.D. Sherby, J. Wadsworth, D.R. Lesuer, C.K. Syn: Mater. Trans., 2008, vol. 49, pp. 2016-27

  8. 8.

    B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander: Acta Mater., 2011, vol. 59, pp. 5845-58

  9. 9.

    L. Xiao, Z. Fan, Z. Jinxiu, Z. Mingxing, K. Mokuang, G. Zhenqi: Phys. Rev. B, 1995, vol. 52, pp. 9970-78

  10. 10.

    Y. Lu, H. Yu, R.D. Sisson Jr.: Mater. Sci. & Eng. A, 2017, vol. 700, pp. 592–97

  11. 11.

    P.G. Winchell, M. Cohen: Trans. ASM, 1962, vol. 55, pp. 347-61

  12. 12.

    M.C. Cadeville, J.M. Friedt, C. Lerner: Metal Phys., 1977, vol. 7, pp. 123-37

  13. 13.

    A. Udyansky, J. von Pezold, A. Dick, J. Neugebauer: Phys. Rev. B, 2011, vol. 83, pp. 184112

  14. 14.

    Z. Fan, L. Xiao, Z. Jinxiu, K. Mokuang, G. Zhenqi: Phys. Rev. B, 1995, vol. 52, pp. 9979-87.

  15. 15.

    G.R. Speich: Trans. TMS-AIME, 1969, vol. 245, 2553-64

  16. 16.

    D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, A.J. Clarke, J.G. Speer, E. De Moor: Acta Mater., 2015, vol. 90, pp. 417–30

  17. 17.

    D.H. Sherman, S.M. Cross, S. Kim, F. Grandjean, G.J. Long, M.K. Miller: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1698-1711

  18. 18.

    S. Allain, F. Danoix, M. Goune, K. Hoummada, D. Mangelik: Phil. Mag. Let., 2013, vol. 93, pp. 68-76

  19. 19.

    L. Morsdorf, C.C. Tasan, D. Ponge, D. Raabe: Acta Mater., 2015, vol. 95, pp. 366–77

  20. 20.

    R. Rementeria, J.D. Poplawsky, M.M. Aranda, W. Guo, J.A. Jimenez, C. Garcia-Mateo, F.G. Caballero: Acta Mater., 2017, vol. 125, pp. 359-68

  21. 21.

    H. Rietveld: J. Appl. Crystallogr., 1969, vol. 2, pp. 65-71

  22. 22.

    C.N. Hulme-Smith, I. Lonardelli, A.C. Dippel, H.K.D.H. Bhadeshia: Scripta Mater., 2013, vol. 69, pp. 409–12

  23. 23.

    C. Garcia-Mateo, J.A. Jimenez, H.-W. Yen, M.K. Miller, L. Morales-Rivas, M. Kuntz, S.P. Ringer, J.-R. Yang, F.G. Caballero: Acta Mater., 2015, vol. 91, pp. 162-73.

  24. 24.

    S. Djaziri, Y. Li, G.A. Nematollahi, B. Grabowski, S. Goto, C. Kirchlechner, A. Kostka, S. Doyle, J. Neugebauer, D. Raabe, G. Dehm: Adv. Mater., 2016, vol. 28, pp. 7753-57.

  25. 25.

    W. Sha, L. Chang, G.D.W. Smith, L. Cheng, E.J. Mittemeijer: Surf. Sci., 1992, vol. 266, pp. 416-23

  26. 26.

    S. Morito, J. Nishikawa, T. Maki: ISIJ Inter., 2003, vol. 43, pp. 1475–77

  27. 27.

    Y. Hirotsu, S. Nagakura: Acta Metall., 1972, vol. 20, pp. 645-54

  28. 28.

    K.A. Taylor, G.B. Olson, M. Cohen, J.B. Vander Sande: Metall. Trans. A, 1989, vol. 20A, pp. 2749-65

  29. 29.

    A. Perlade, O. Bouaziz, Q. Furnémont: Mater. Sci. Eng. A, 2003, vol. 356, pp. 145-52

  30. 30.

    J.R.G.da Silva, R.B. McLellan: Mater. Sci. Eng. A, 1976, vol. 26, pp. 83-87

  31. 31.

    H. Abe: Scand. J. Metall., 1984, vol. 13, pp. 226-39

  32. 32.

    J. Wilde, A. Cerezo, G.D.W. Smith: Scripta Mater., 2000, vol. 43, pp. 39–48

  33. 33.

    Y. Kobayashi, J. Takahashi, K. Kawakami: Ultramicroscopy, 2011, vol. 111, pp. 600–03

  34. 34.

    B. Gault, F. Danoix, K. Hoummadad, D. Mangelinck, H. Leitner: Ultramicroscopy, 2012, vol. 113, pp. 182–91

  35. 35.

    S. Harjo, T.Kawasaki, Y. Tomota, W. Gong, K. Aizawa, G. Tichy, Z. Shi, and T. Ungar: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4080-92

  36. 36.

    L. Cheng, A. Böttger, Th.H. de Keijser, E.J. Mittemeijer: Scripta Metall., vol. 24, 1990, pp.509-14.

  37. 37.

    C.S. Roberts: Trans. Am. Inst. Metall. Eng., 1953, vol. 197, pp. 203-04.

  38. 38.

    W.C. Leslie, The Physical Metallurgy of steels, McGraw-Hill, New York, 1982, Sections 2 and 3

  39. 39.

    K.A. Taylor, L. Chang, G.B. Olson, G.D.W. Smith, M. Cohen, and J.B. Vander Sande: Metall. Trans. A, 1989, vol. 20A, pp. 2717–37.

  40. 40.

    M. Kusunoki, S. Nagakura: J. Appl. Cryst., 1981, vol. 14, pp. 329-36

  41. 41.

    K. Han, M.J. van Genderen, A. Böttger, H.W. Zandbergen, J. Mittemeijer: Phil. Mag., 2001, vol. 81, pp. 741-57

  42. 42.

    M.K. Miller, P.A. Beaven, G.D.W. Smith: Metall. Trans. A, 1981, vol. 12A, pp. 1197–1204.

  43. 43.

    L. Chang, S.J. Barnard, G.D.W. Smith, in G. Krauss and P.E. Repas (Eds), Fundamentals of Aging and Tempering in Bainitic and Martenstic Steel Products, Warrendale, PA, 1992, pp. 19–28

  44. 44.

    A. Cochardt, G. Schoeck, H. Wiedersich: Acta Metall., 1955, vol. 3, pp. 533-37

  45. 45.

    H. Ohtsuka, V.A. Dinh, T. Ohno, K. Tsuzaki, K. Tsuchiya, R. Sahara, H. Kitazawa, and T. Makamura: Tetsu-to-Hagane, 2014, vol. 100 pp. 1329-38

  46. 46.

    P.V. Chirkov, A.A. Mirzoef, D.A. Mirzaev: Phys. Metals and Metallography, 2016, vol. 117, pp. 1138-43

  47. 47.

    B. Hutchinson, D. Lindell, M. Barnett: ISIJ Int., 2015, vol. 55, pp. 1114-22.

  48. 48.

    T. Tanaka, A.J. Wilkinson: Ultramicroscopy, 2019, vol. 202, pp. 87-99

  49. 49.

    T. Tanaka, A.J. Wilkinson: Microsc. Microanal., 2018, vol. 24 (Suppl. 1) pp. 962-63

  50. 50.

    S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323–31

  51. 51.

    Y. Iijima, K. Kimura and K. Hirano: Acta Met., 1988, vol. 36, pp. 2811-20

  52. 52.

    J.T. Michalak, H.W. Paxton: Trans. AIME, 1961, vol. 221, pp. 850-57

  53. 53.

    S. Harper: Phys. Rev., 1951, vol. 83, pp. 709-12

  54. 54.

    C. Wert: Phys. Rev., 1950, vol. 79, pp. 601-05

  55. 55.

    R.H. Doremus: Trans. AIME, 1960, vol. 218, pp. 591-605

  56. 56.

    H. Abe, T. Suzuki: Trans. ISIJ, 1980, vol. 20, pp. 691-95

  57. 57.

    A.K. De, S. Vandeputte, B.C. De Cooman: Scripta Mater., 2001, vol. 44, pp. 695–700

  58. 58.

    G.V. Kurdjumov: J. Iron Steel Inst., 1960, vol. 195, pp. 26-48

  59. 59.

    J.H. Jang, H.K.D.H. Bhadeshia, D-W Suh: Scripta Mater., 2013, vol. 68, pp. 195–98

Download references

Author information

Correspondence to Naoki Maruyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 22, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maruyama, N., Tabata, S. & Kawata, H. Excess Solute Carbon and Tetragonality in As-Quenched Fe-1Mn-C (C:0.07 to 0.8 Mass Pct) Martensite. Metall and Mat Trans A 51, 1085–1097 (2020). https://doi.org/10.1007/s11661-019-05617-y

Download citation