Advertisement

Phase and Microstructure Evolution of a Low-Alloyed Steel During Intercritical Annealing and Quenching

Abstract

Strong, yet ductile steels can be manufactured by applying optimized thermal treatments during production. Such treatments can be performed on low-alloyed steels and their mechanical properties can be tuned within relatively wide limits. Although dual-phase steels only contain low concentrations of alloying elements due to optimized thermal processing they can reach ultimate strengths of 1000 MPa or elongations to fracture of up to 30 pct. During their production ferrite (α) partially transforms into austenite (γ) and then during quenching further into martensite (α′). So far, many assumptions had to be made about these transformations since they were difficult to observe at elevated temperatures and during quenching. In this study, we combine heating and quenching inside an SEM with EBSD measurements to track the evolution of the microstructure at the surface of a small steel sample throughout a simulated production path. The orientation relationships of austenite and martensite formation are investigated by EBSD mapping of the parent and product phases. The microstructure is analyzed before and after quenching and the orientation relationships associated with the γ–α transformation as well as the γα′ transformation are compared. For the first time, the orientation relationships (OR) between ferrite, austenite, and martensite are directly compared within the same location of a sample. The results show that the Kurdjumov–Sachs (KS) and Nishiyama–Wassermann(NW) ORs only approximately describe the γ–α and γα′ transitions. The experiment reveals the role of KS/NW boundaries in the intercritical regime and microscopically observes the consequences of the γα′ transition. It was found that the formation of martensite causes highly deformed ferrite in its vicinity which most likely affects the mechanical properties of the dual-phase steel. It is expected that this type of experiment will help in better understanding microstructural mechanisms during heat treatments and eventually will contribute in the development of steels with tailored microstructures.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    1 M.S. Rashid: Annu. Rev. Mater. Sci., 1981, vol. 11, pp. 245–66.

  2. 2.

    G.R. Speich, V.A. Demarest, and R.L. Miller: Metall. Trans. A Phys. Metall. Mater. Sci. 1981, vol. 12, pp. 1419–28.

  3. 3.

    C. A. N. Lanzillotto and F.B. Pickering: Met. Sci., 1982, vol. 16, pp. 371–82.

  4. 4.

    4 N.K. Balliger and T. Gladman: Met. Sci., 1981, vol. 15, pp. 95–108.

  5. 5.

    D. A. Korzekwa, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1984, vol. 15, pp. 1221–8.

  6. 6.

    6 K. Hulka: Mater. Sci. Forum, 2003, vol. 414–415, pp. 101–10.

  7. 7.

    7 R. Kuziak, R. Kawalla, and S. Waengler: Arch. Civ. Mech. Eng., 2008, vol. 8, pp. 103–17.

  8. 8.

    8 N.J. Kim and G. Thomas: Metall. Trans. A, 1981, vol. 12, pp. 483–9.

  9. 9.

    J. Guo, G. SenZhu, Z.Q. Yao, J. Liu, Y. Du, and F. Li: Adv. Mater. Res., 2013, vol. 631–632, pp. 404–11.

  10. 10.

    10 G. Avramovic-Cingara, Y. Ososkov, M.K. Jain, and D.S. Wilkinson: Mater. Sci. Eng. A, 2009, vol. 516, pp. 7–16.

  11. 11.

    A. Kamp, S. Celotto, and D.N. Hanlon: Mater. Sci. Eng. A, 2012, vol. 538, pp. 35–41.

  12. 12.

    12 S. Patra, S.M. Hasan, N. Narasaiah, and D. Chakrabarti: Mater. Sci. Eng. A, 2012, vol. 538, pp. 145–55.

  13. 13.

    M. SarwarPaec and P.R. Priestner: J. Mater. Sci., 1996, vol. 31, pp. 2091–95.

  14. 14.

    14 P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1–6.

  15. 15.

    15 H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer, and K.S. Kumar: Acta Mater., 2014, vol. 62, pp. 197–211.

  16. 16.

    16 H. Ghadbeigi, C. Pinna, S. Celotto, and J.R. Yates: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5026–32.

  17. 17.

    17 L. Schemmann, S. Zaefferer, D. Raabe, F. Friedel, and D. Mattissen: Acta Mater., 2015, vol. 95, pp. 386–98.

  18. 18.

    A. Nouri, H. Saghafian, and S. Kheirandish: J. Iron Steel Res. Int., 2010, vol. 17, pp. 44–50.

  19. 19.

    19 R.G. Davies: Metall. Trans. A, 1978, vol. 9, pp. 671–79.

  20. 20.

    20 N. Peranio, F. Roters, and D. Raabe: Mater. Sci. Forum, 2012, vol. 715–716, pp. 13–22.

  21. 21.

    21 C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 391–431.

  22. 22.

    R. Priestner and M. Ajmal: Mater. Sci. Technol., 1987, vol. 3, p. 3.

  23. 23.

    23 G.S. Huppi, D.K. Matlock, and G. Krauss: Scr. Metall., 1980, vol. 14, pp. 1239–43.

  24. 24.

    24 J. Zhang, L. Morsdorf, and C.C. Tasan: Mater. Charact., 2016, vol. 111, pp. 137–46.

  25. 25.

    25 E.C. Bain: Trans. Am. Inst. Min. Metall. Eng., 1924, vol. 70, pp. 25–46.

  26. 26.

    26 V.G. Kurdjumow and G. Sachs: Zeitschrift für Phys., 1930, vol. 64, pp. 325–43.

  27. 27.

    Z. Nishiyama: Martensitic Transformation, Academic Press,New York, 1978.

  28. 28.

    28 G. Wassermann: Mitt K-Wilh-Inst Eisenforsch, 1935, vol. 17, pp. 149–55.

  29. 29.

    G. Brückner, J. Pospiech, I. Seidl, G. Gottstein: Scr. Mater., 2001, vol. 44, pp. 2635–40.

  30. 30.

    30 G. Brückner and G. Gottstein: ISIJ Int., 2001, vol. 41, pp. 468–77.

  31. 31.

    31 I. Lischewski and G. Gottstein: Acta Mater., 2011, vol. 59, pp. 1530–41.

  32. 32.

    32 T. Fukino and S. Tsurekawa: Mater. Trans., 2008, vol. 49, pp. 2770–5.

  33. 33.

    33 G. Nolze: ZEITSCHRIFT FUR Met., 2004, vol. 95, pp. 744–55.

  34. 34.

    34 S. Nambu, N. Shibuta, M. Ojima, J. Inoue, T. Koseki, and H.K.D.H. Bhadeshia: Acta Mater., 2013, vol. 61, pp. 4831–9.

  35. 35.

    35 M. Sarwar, E. Ahmad, K.A. Qureshi, and T. Manzoor: Mater. Des., 2007, vol. 28, pp. 335–40.

  36. 36.

    36 M.J. Santofimia, C. Kwakernaak, W.G. Sloof, L. Zhao, and J. Sietsma: Mater. Charact., 2010, vol. 61, pp. 937–42.

  37. 37.

    37 C. Cabus, H. Regle, and B. Bacroix: J. Phys. IV Fr., 2004, vol. 120, pp. 137–44.

  38. 38.

    38 J. Savoie, R.K. Ray, M.P. Butrón-Guillén, and J.J. Jonas: Acta Metall. Mater., 1994, vol. 42, pp. 2511–23.

  39. 39.

    39 B. Hutchinson, L. Ryde, E. Lindh, and K. Tagashira: Mater. Sci. Eng. A, 1998, vol. 257, pp. 9–17.

  40. 40.

    I. Lischewski, D.M. Kirch, A. Ziemons, and G. Gottstein: Texture Stress. Microstruct., 2008, 10.1155/2008/294508.

  41. 41.

    G. Nolze and R. Hielscher: J. Appl. Crystallogr., 2016, 10.1107/S1600576716012942.

  42. 42.

    42 A.T.W. Kempen, F. Sommer, and E.J. Mittemeijer: Acta Mater., 2002, vol. 50, pp. 3545–55.

  43. 43.

    43 T. Nagano and M. Enomoto: Metall. Mater. Trans. A, 2006, vol. 37, pp. 929–37.

  44. 44.

    44 S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323–31.

  45. 45.

    45 S. Sun, B. L. Adams, W. E. King: Philos. Mag. A, 2000, vol. 80, pp. 9–25.

  46. 46.

    46 W. Pantleon: Scr. Mater., 2008, vol. 58, pp. 994–7.

  47. 47.

    47 K.E. Easterling and A.R. Thölen: Acta Metall., 1976, vol. 24, pp. 333–41.

  48. 48.

    48 G.B. Olson and M. Cohen: Annu. Rev. Mater. Sci., 1981, vol. 2, pp. 1–19.

  49. 49.

    49 G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1905–14.

  50. 50.

    50 G. Nolze: Cryst. Res. Technol., 2006, vol. 41, pp. 72–7.

  51. 51.

    51 C. Cayron: Acta Mater., 2015, vol. 96, pp. 189–202.

  52. 52.

    52 H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279–88.

  53. 53.

    53 G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara: Acta Mater., 2010, vol. 58, pp. 6393–403.

Download references

Acknowledgments

This work has been conducted within the framework of the Research Training Group 1483 of the Deutsche Forschungsgemeinschaft “Process chains in manufacturing: Interaction, modelling and evaluation of process zones” and M.H.W. and M.P. were funded by this program.

Author information

Correspondence to Reiner Mönig.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 29, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 191 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pfund, M., Wenk, M. & Mönig, R. Phase and Microstructure Evolution of a Low-Alloyed Steel During Intercritical Annealing and Quenching. Metall and Mat Trans A (2020). https://doi.org/10.1007/s11661-019-05603-4

Download citation