Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Nanocrystalline NiWO4-WO3-WO2.9 Composite Strings: Fabrication, Characterization and their Electrocatalytic Performance for Hydrogen Evolution Reaction

  • 49 Accesses

Abstract

In this study, novel nano crystalline composite strings made from mixed nickel-tungsten oxides (NiWO4-WO3-WO2.9) have been fabricated. The NiWO4-WO3 fibers produced by the electrospinning method were post treated in an argon atmosphere at 800 °C which yielded NiWO4-WO3-WO2.9 nanocrystals attached together forming a string-like structure. The presence of WO2.9 phase was confirmed by both the XRD and TEM diffraction pattern analysis. String morphology and structure were found to change with different post treatment conditions such as by changing the calcination temperature from 550 °C under oxygen to 800 °C under pure argon atmosphere. This material was investigated for electrocatalytic hydrogen evolution reaction (HER) in 0.5 M H2SO4 and 0.1 M KOH electrolytes. These composite strings showed good electrocatalytic activity compared to the NiWO4-WO3 fibers reported previously (Anis et al. in J. Mater. Sci. 52:7269–7281, 2017). It was concluded that the presence of WO2.9 phase increases the electrocatalytic activity of the catalyst as compared to the NiWO4-WO3 fibers with overpotentials as low as 40 and 50 mV in 0.5 M H2SO4 and 0.1 M KOH, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    1.S.F. Anis, B.S. Lalia, A.O. Mostafa, R. Hashaikeh, J Mater Sci 2017, vol. 52, pp. 7269-7281.

  2. 2.

    2.M.L.Y. Lin, Y. Pan, J. Zhang, J Mater Sci 2017, vol. 52, pp. 10406-10417.

  3. 3.

    3.B. Zhang, H. Zhu, M. Zou, X. Liu, H. Yang, M. Zhang, W. Wu, J. Yao and M. Du, J Mater Sci 2017, vol. 52, pp. 8207-8218.

  4. 4.

    M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang and J. Yang, Nat. Commun. 2014, 5:4695.

  5. 5.

    5.M. Li, Journal of Contemporary Asia 2007, vol. 37, pp. 449-471.

  6. 6.

    6.X. Yang, Q. Li, E. Lu, Z. Wang, X. Gong, Z. Yu, Y. Guo, L. Wang, Y. Guo, W. Zhan, J. Zhang and S. Dai, Nat. Commun. 2019, vol. 10.1, p. 1611.

  7. 7.

    7.C. Fried, Fuel Cells Bulletin 2011, vol. 2011, pp. 12-14.

  8. 8.

    8.A. Ursua, L.M. Gandia and P.Sanchis, Proc. IEEE 2012, vol. 100, pp. 410-426.

  9. 9.

    9.R. Hashaikeh, B.S. Lalia, V. Kochkodan and N. Hilal, Journal of Membrane Science 2014, vol. 471, pp. 149-154.

  10. 10.

    10.B.S. Lalia, F.E. Ahmed, T. Shah, N. Hilal and R. Hashaikeh, Desalination 2015, vol. 360, pp. 8-12.

  11. 11.

    11.S.F. Anis, R.Hashaikeh and N. Hilal, Desalination 2019, vol. 468, p. 114077.

  12. 12.

    12.X. Yan, L. Tian and X. Chen, Journal of Power Sources 2015, vol. 300, pp. 336-343.

  13. 13.

    13.H. Zheng and M. Mathe, International Journal of Hydrogen Energy 2011, vol. 36, pp. 1960-1964.

  14. 14.

    14.S. Zou, J. Liu, H. Kobayashi, C. Chen, P. Qiao, R. Li, L. Xiao and J. Fan, The Journal of Physical Chemistry C 2017, vol. 121, pp. 4343-4351.

  15. 15.

    Z. Luo, R. Miao, T.D. Huan, I.M. Mosa, A.S. Poyraz, W. Zhong, J.E. Cloud, D.A. Kriz, S. Thanneeru and J. He, Advanced Energy Materials 2016, vol. 6: 1600528.

  16. 16.

    16.S.F. Anis, A. Khalil, G. Singaravel and R. Hashaikeh, Microporous and Mesoporous Materials 2016, vol. 236, pp. 176-192.

  17. 17.

    17.S.F. Anis, G. Singaravel and R. Hashaikeh, Materials Chemistry and Physics 2017, vol. 200, pp. 146-154.

  18. 18.

    18.S.F. Anis, R. Hashaikeh and N. Hilal, Desalination 2019, vol. 452, pp. 159-195.

  19. 19.

    19.J. Leng, X. Xu, N. Lv, H. Fan and T. Zhang, Journal of Colloid and Interface Science 2011, vol. 356, pp. 54-57.

  20. 20.

    20.X.W. Kong, R.L. Zhang, S.K. Zhong and L. Wu, Materials Science-Poland 2016, vol. 34, pp. 227-232.

  21. 21.

    21.K. Tang, X. Mu, P.A. van Aken, Y. Yu and J. Maier, Advanced Energy Materials 2013, vol. 3, pp. 49-53.

  22. 22.

    22.E. Formo, E. Lee, D. Campbell and Y. Xia, Nano Letters 2008, vol. 8, pp. 668-672.

  23. 23.

    Y. Yang, L. Xu, C. Su, J. Che, W. Sun and H. Gao, Journal of Nanomaterials 2014, 2014:1–7.

  24. 24.

    24.K. Wang, D. Xi, C. Zhou, Z. Shi, H. Xia, G. Liu and G. Qiao, Journal of Materials Chemistry A 2015, vol. 3, pp. 9415-9420.

  25. 25.

    25.F. Chekin, S. Bagherib and S.B. AbdHamidb, J. Chin. Chem. Soc 2013, vol. 60, pp. 447-451.

  26. 26.

    26.B.S. Lalia, A. Khalil, T. Shah and R. Hashaikeh, Ionics 2015, vol. 21, pp. 2755-2762.

  27. 27.

    27.B.S. Lalia, T. Shah and R. Hashaikeh, Journal of Power Sources 2015, vol. 278, pp. 314-319.

  28. 28.

    28.J. Moon, J.-A. Park, S.-J. Lee, S.C. Lim and T. Zyung, Current Applied Physics 2009, vol. 9, pp. S213-S216.

  29. 29.

    29.P. Frontera, L. A. Scarpino, C. Busacca, P. L. Antonucci, S. Siracusano and A. S. Aricò, Materials Letters 2014, vol. 134, pp. 281-285.

  30. 30.

    30.V. Nair, F. Regius, A. Ragavendar and S. Suman, In International Conference on Industrial Engineering and Operations Management (IEOM), 2015, (2015), pp 1-8.

  31. 31.

    31.K. Asokan, J.Y. Park, S.-W. Choi and S.S. Kim, Nanoscale Research Letters 2010, vol. 5, p. 747.

  32. 32.

    32.C. Wu, C. Li, B. Yang, S. Zhou, D. Shi, Y. Wang, G. Yang, J. He and Y. Shan, Materials Research Express 2016, vol. 3, p. 095018.

  33. 33.

    Y.H. Li, P.F. Liu, L.F. Pan, H.F. Wang, Z.Z. Yang, L.R. Zheng, P. Hu, H.J. Zhao, L. Gu and H.G. Yang, Nat Commun 2015, vol. 6, p. 8064

  34. 34.

    34.J.F. Al-Sharab, R.K. Sadangi, V. Shukla, S.D. Tse and B.H. Kear, Crystal Growth & Design 2009, vol. 9, pp. 4680-4684.

  35. 35.

    35.F. Xu, S.D. Tse, J.F. Al-Sharab and B.H. Kear, Applied Physics Letters 2006, vol. 88, p. 243115.

  36. 36.

    T.K. Shah, H.C. Malecki, R.R. Basantkumar, H. Liu, C.A. Fleischer, J.J. Sedlak, J.M. Patel, W.P. Burgess and J.M. Goldfinger (Google Patents: 2014).

  37. 37.

    S.F. Anis and R. Hashaikeh, Microporous and Mesoporous Materials 2016, vol. 233, pp. 78-86.

  38. 38.

    38.P.C.K. Vesborg, B. Seger and I. Chorkendorff, The Journal of Physical Chemistry Letters 2015, vol. 6, pp. 951-957.

  39. 39.

    39.H. Rietveld, Journal of Applied Crystallography 1969, vol. 2, pp. 65-71.

  40. 40.

    P. Villars and K. Cenzual: Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (on CD), Release 2009/10, ASM International, Materials Park, OH, USA.

  41. 41.

    B. Predel, In Ni-Np – Pt-Zr, ed. O. Madelung, Springer Berlin, 1998, pp 1–6.

  42. 42.

    S.F. Anis, B.S. Lalia, G. Palmisano and R. Hashaikeh, J Mater Sci 2017, 6:3267–56.

  43. 43.

    43.E. Kemppainen, A. Bodin, B. Sebok, T. Pedersen, B. Seger, B. Mei, D. Bae, P. C. K. Vesborg, J. Halme, O. Hansen, P. D. Lund and I. Chorkendorff, Energy & Environmental Science 2015, vol. 8, pp. 2991-2999.

  44. 44.

    44.Y.‐H. Chang, C.‐T. Lin, T.‐Y. Chen, C.‐L. Hsu, Y.‐H. Lee, W. Zhang, K.‐H. Wei and L.‐J. Li, Advanced Materials 2013, vol. 25, pp. 756-760.

  45. 45.

    45.D.Y. Chung, S.W. Jun, G. Yoon, H. Kim, J.M. Yoo, K.-S. Lee, T. Kim, H. Shin, A.K. Sinha, S.G. Kwon, K. Kang, T. Hyeon and Y.-E. Sung, Journal of the American Chemical Society 2017, vol. 139, pp. 6669-6674.

  46. 46.

    46.P. Jiang, Q. Liu, Y. Liang, J. Tian, A. M Asiri and X. Sun, Angewandte Chemie International Edition 2014, vol. 53, pp. 12855-12859.

  47. 47.

    47.J. Tian, Q. Liu, A.M. Asiri and X. Sun, Journal of the American Chemical Society 2014, vol. 136, pp. 7587-7590.

Download references

Acknowledgment

The authors would like to thank Florent Ravaux, Masdar Institute, Khalifa University of Science and Technology for extending his help during TEM.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Correspondence to Raed Hashaikeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 18 August, 2019.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 601 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anis, S.F., Mostafa, A.O., Hilal, N. et al. Nanocrystalline NiWO4-WO3-WO2.9 Composite Strings: Fabrication, Characterization and their Electrocatalytic Performance for Hydrogen Evolution Reaction. Metall and Mat Trans A 51, 1264–1274 (2020). https://doi.org/10.1007/s11661-019-05596-0

Download citation