Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A Fatigue Life Model for Predicting Crack Nucleation at Inclusions in Ni-Based Superalloys

  • 123 Accesses

Abstract

Engineering alloys such as Ni-based alloys, Al-alloys, and steels often contain non-metallic inclusions in their microstructures. These inclusions, which include oxide particles, carbides, and intermetallic particles, are introduced during component manufacturing processes such as casting, powder-metallurgy, or additive manufacturing methods. The presence of inclusions in the microstructure can promote fatigue crack nucleation by competing against slipband nucleation and reduce fatigue life performance of an engineering component. While it has been reported in many occasions, the competition between fatigue crack nucleation at inclusions and slipbands is still not well understood. In this article, the conditions for the concurrent occurrence of fatigue crack nucleation at inclusions and slipbands are analyzed theoretically. The analysis indicates that there exists a critical inclusion size (diameter) below which there is no fatigue life debit due to crack initiation at inclusions and above which a transition from slip-induced to inclusion-induced crack nucleation occurs. The low-cycle fatigue life model is applied to Ni-based superalloys and the model predictions are compared against experimental data from the literature to assess the dependence of the critical inclusion size on the slip morphology, grain size of the matrix, and the shear modulus of the inclusion.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    J. Lankford: Int. Metals Review, 1977, vol. 21, pp. 221–228.

  2. 2.

    J.C. Grosskreutz and G.G. Shaw: Proceedings of 2nd International Conference on Fracture, P.L. Pratt, E.H. Andrews, R.L. Bell, N.E. Frost, R.W. Nichols, and E. Smith, eds., Chapman and Hall, London, 1969, pp. 620–29.

  3. 3.

    C. Y. Kung and M. E. Fine: Metall. Trans. A, 1979, vol. 10A, pp. 603–610.

  4. 4.

    C. Q. Bowles and J. Schijve: Int. J. of Fracture, 1973, vol. 9, pp. 171–179.

  5. 5.

    R. Chang, W. L. Morris, and O. Buck: Scripta Metall., 1979, vol. 13, pp. 191–194.

  6. 6.

    W. L. Morris and M. R. James: Metall. Trans. A, 1980, vol. 11A, pp. 850–851.

  7. 7.

    J. M. Hyzak and I. M. Bernstein: Metall. Trans. A, 1982, vol. 13A, pp. 33–43.

  8. 8.

    J. M. Hyzak and I. M. Bernstein: Metall. Trans. A, 1982, vol. 13A, pp. 45–52.

  9. 9.

    A. Pineau: in High Temperature Materials for Power Engineering, Part II, R. Bachelet, R. Brunetaud, D. Coutsouradis, P. Esslinger, J. Ewald, I. Kvernes, Y. Lindblom, D.B. Meadowcroft, V. Regis, R.B. Scarlin, K. Schneider, and R. Singer, eds., Kluwer Academic Press, Dordrecht, 1990, pp. 913–34.

  10. 10.

    F. Alexandre, S. Deyber, and A. Pineau: Scripta Mater., 2004, vol. 50, pp. 25–30.

  11. 11.

    N. Späth, V. Zerrouki, P. Poubanne, and Y.J. Guedou: in Superalloys 718, 625 and Various Derivatives, E.A. Loria, ed., TMS (The Minerals, Metals & Materials Society), 2001, pp. 173–83.

  12. 12.

    Y. Ono, T. Yuri, H. Sumiyoshi, and E. Takeuchi: Mater. Trans., 2004, vol. 45, No. 2, pp. 342–45.

  13. 13.

    P.R. Bhowal and A.M. Wusatowska-Sarnek: in Superalloys 718, 625, 706 and Derivatives 2005, E.A. Loria, ed., TMS, Warrdendale, PA, 2005, pp. 341–49.

  14. 14.

    C.E. Schamblen and D.R. Chang: Metall. Trans. B, 1985, vol. 16B, pp. 775–84.

  15. 15.

    D.R. Chang, D.D. Krueger, and R.A. Sprague: in Superalloys 1984, Proceedings of the Fifth International Symposium on Superalloys, M. Gell, C.S. Kortovich, R.H. Bricknell, W.B. Kent, and J.F. Radavich, eds., TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 1984, pp. 245–73.

  16. 16.

    X. Xie, L. Zhang, M. Zhang, J. Dong, and K. Bain: in Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 2004, pp. 451–58.

  17. 17.

    M.J. Caton, S.K. Jha, A.H. Rosenberger, and J.M. Larsen: in Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS (The Minerals, Metals & Materials Society), Warrendale, Pa, 2004, pp. 305–12.

  18. 18.

    W.J. Porter III, K. Li, M.J. Caton, S. Jha, B.B. Bartha, and J.M. Larsen: in Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard, eds., TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 2008, pp. 541–48.

  19. 19.

    J. Gayda, and R. V. Miner: Int. J. Fatigue, 1983, vol. 5, No. 3, pp. 135-143.

  20. 20.

    D. A. Jablonski: Materials Science and Engineering, 1981, vol. 48, pp. 189-198.

  21. 21.

    K. Zhao, X.-L. Liu, and Y.-H. He: IOP Conference Series: Materials Science and Engineering 269, IOP Publishing, 2017, p. 012005, https://doi.org/10.1088/1757-899x/269/1/012005.

  22. 22.

    T.P. Gabb, J. Telesman, P.T. Kantzos, and K. O’Connor: Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3, NASA/TM-2002-211796, NASA Glenn Research Center, Cleveland, OH, 2002.

  23. 23.

    Honeywell Aerospace Inc.: DARPA Open Manufacturing Program Phase 3, Contract Number HR0011-12-C-0037, 2018.

  24. 24.

    K.S. Chan and A. Peralta-Duran: Metall. Mater. Trans. A, https://doi.org/10.1007/s11661-019-05309-7, published on-line, 21 June 2019.

  25. 25.

    G. T. Cashman: Int. J. Fatigue, 2010, vol. 32, pp. 492–496.

  26. 26.

    S. K. Jha, M. J. Caton, and J. M. Larsen: Mat. Sci. Eng. A, 2007, vol. 468–470, pp. 23–32

  27. 27.

    K. Tanaka and T. Mura: ASME J. Appl. Mech., 1981, vol. 48, pp. 97–102.

  28. 28.

    K. Tanaka and T. Mura: Metall. Trans. A, 1982, vol. 13A, pp. 117–123.

  29. 29.

    K. S. Chan: Metall Trans A, 2003, Vol. 34A, pp. 43-58.

  30. 30.

    K.S. Chan: Int. J. Fatigue, 2010, Vol. 32, pp. 1428-1447.

  31. 31.

    A. de Bussac and J.C. Lautridou: Fat. Fract. Eng. Mater. Struct., 1993, vol. 16, No. 8, pp. 861–84.

  32. 32.

    Y. Murakami and M. Endo: Eng. Fract. Mech., 1983, vol. 17, No. 1, pp. 1–15.

  33. 33.

    Y. Murakami, S. Kodama, and S. Konuma: Int. J. Fatigue, 1989, vol. 11, No. 5, pp. 291–298.

  34. 34.

    J. Jiang, J. Yang, T. Zhang, F. P. E. Dunne, and T. B. Britton: Acta Mater., 2015, vol. 97, pp. 367–379.

  35. 35.

    J. Jiang, J. Yang, T. Zhang, J. Zou, Y. Wang, F. P. E. Dunne, and T. B. Britton: Acta Mater., 2016, vol. 117, pp. 333–344.

  36. 36.

    T. Zhang, J. Jiang, B. Britton, B. Shollock, and F. Dunne: Proc. Royal Soc. A., 2016, vol. 472, 20150792.

  37. 37.

    E.S. Huron and P.G. Roth: in Superalloy 1996, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, eds., TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 1996, pp. 359–67.

  38. 38.

    P. Kantzos, P. Bonacuse, J. Telesman, T. Gabb, R. Barrie, and A. Banik: in Superalloy 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 2004, pp. 409–17.

  39. 39.

    M.P. Enright and R.C. McClung: Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air, GT2010-23618, 14–18 June 2010, Glasgow, Scotland, UK.

  40. 40.

    D. Texier, J. Cormier, P. Villechaise, J.-C. Stinville, C.J. Torbet, S. Pierret, and T.M. Pollock: Mater. Sci. Eng. A, 2016, vol. 678, pp. 122–36.

  41. 41.

    D. Texier, A. Gómez, S. Pierret, J-M. Franchet, T. M. Pollock, P. Villechaise, J. Cormier: Metall. Mater. Trans. A, 2016, 47 (3), pp. 1096–1109

  42. 42.

    M. Abikchi, T. Billot, J. Crepin, A. Longuet, C. Mary, T.F. Morgeneyer, and A. Pineau: Proceedings of 13th International Conference on Fracture, 16–21 June 2013, Beijing, China.

  43. 43.

    X. Zhu, C. Gong, Y.-F. Jia, R. Wang, C. Zhang, Y. Fu, S.-T. Tu, and X-C. Zhang: J. Mater. Sci. Technol., vol. 35, 2019, pp. 1607–17.

  44. 44.

    G-J. Deng, S-T. Tu, X-C. Zhang, Q-Q. Wang, and C-H. Qin: Eng. Fracture Mech., vol. 134, 2015, pp. 433–450.

  45. 45.

    A. Weidner, J. Man, W. Tirschler, P. Klapetek, C. Blochwitz, J. Polák, and W. Skrotzki: Materials Science and Engineering A, 2008, vol. 494, pp. 118-127.

  46. 46.

    A. Weidner, C. Blochwitz, W. Skrotzki, and W. Tirschler: Mater. Sci. Eng. A, 2008, vol. 479, pp. 181–90.

  47. 47.

    A. Weidner, R. Beyer, C. Blochwitz, C. Holste, A. Schwab, and W. Tirschler: Materials Science and Engineering A, 2006, vol. 435-436, pp. 540-546.

  48. 48.

    P. Lukáš and L. Kunz: Materials Science and Engineering A, 2001, vol. A314, pp. 75-80.

  49. 49.

    K. Obrtlík, P. Lukáš, and J. Polák: in Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, K.-T. Rie and P.D. Portella, eds., Elsevier, Amsterdam, 1998.

  50. 50.

    M. Risbet and X. Feaugas: Eng. Fract. Mech., 2008, vol. 75, pp. 3511–19.

  51. 51.

    K.S. Chan, J.W. Tian, B. Yang, and P.K. Liaw: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2545–56.

  52. 52.

    A. Shyam and W.W. Milligan: Acta Mater., 2004, vol. 52, pp. 1503–1513.

  53. 53.

    J. H. Zhang, Z. Q. Hu, Y. B. Xu, and Z. G. Wang, Z. G.: Metallurgical Transactions A, 1992, vol. 23A, pp. 1253-1258.

  54. 54.

    J. Dahal, K. Maciejewski, and H. Ghonem: International Journal of Fatigue, 2013, vol. 57, pp. 93-102.

  55. 55.

    H. S. Ho, M. Risbet, and X. Feaugas: International Journal of Fatigue, 2017, vol. 102, pp. 1–8.

  56. 56.

    K. S. Chan: Metall. Mater. Transactions A., 2014, vol. 45A, pp. 3454–3466.

  57. 57.

    T.P. Gabb, P.T. Kantzos, B. Palsa, J. Telesman, J. Gayda, and C.K. Sudbrack: in 12th International Symposium on Superalloys 2012, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman, eds., TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 2012, pp. 63–72.

  58. 58.

    T. P. Gabb, P. T. Kantzos, J. Telesman, J. Gayda, C. K. Sudbrack, and B. Palsa: Int. J. Fatigue, 2011, vol. 33, pp. 414–426.

  59. 59.

    K. S. Chan: Metall. Mater. Transactions A., 2018, vol. 49A, pp. 5353–5367.

  60. 60.

    W. E. Duckworth: Metallurgia, 1964, vol. 69, pp. 53–55.

  61. 61.

    R. Kiessling: Non-Metallic Inclusions in Steels; Part 3: The Origin and Behavior of Inclusions and their Influence on the Properties of Steels, The Iron and Steel Institute, London, UK, 1968.

  62. 62.

    N. E. Frost: J. Mech. Phys. Solids, 1961, vol. 9, pp. 143–151.

  63. 63.

    Z. G. Yang, G. Yao, G. Y. Li, S. X. Li, Z. M. Chu, W. J. Hui, H. Dong, Y. Q. Weng: Int. J. Fatigue, 2004, vol. 26, pp. 959–966.

  64. 64.

    S.J. Hudak Jr., K.S. Chan, G.G. Chell, Y-D. Lee, and R.C. McClung: Proceedings of David L. Davidson Symposium on Fatigue, K.S. Chan, P.K. Liaw, R.S. Bellows, T.C. Zogas, and W.O. Soboyejo, eds., TMS, Warrendale, PA, 2002, pp. 107–20.

  65. 65.

    M.H. El Haddad, K.N. Smith, and T.H. Topper: ASME J. Eng. Mat. Tech., 1979, vol. 101, pp. 42-46.

  66. 66.

    X.-F. Ma, Z. Duan, H.-J. Shi, R. Murai, and E. Yanagisawa: J. Zhejiang Univ. Sci. A (Appl. Phys. Eng.), 2011, vol. 11, pp. 727–37.

  67. 67.

    Z. G. Yang, J. M. Zhang, S. X. Li, G. Y. Li, Q. Y. Wang, W. J. Hui, Y. Q. Weng: Mater. Sci. Eng. A, 2006, vol. 427, pp. 167–174.

  68. 68.

    Q. Y. Wang, C. Bathias, N. Kawagoishi, and Q. Chen: Int. J. Fatigue, 2002, vol. 24, pp. 1269–1274.

  69. 69.

    J. Miao, T.M. Pollock, and J.W. Jones: Superalloys 2008, by R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard, eds., TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 2008, pp. 589–97.

Download references

Acknowledgments

This work was supported by the US Air Force Metal Affordability Initiative (Agreement Order No. FA8650-14-2-5211A0#40) (Patrick Golden, Program Manager). The clerical assistance of Ms. Loretta Mesa and Ms. Adrianna Bosquez, both at SwRI, in the preparation of the manuscript is acknowledged. The views, opinions, and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Author information

Correspondence to Kwai S. Chan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 9, 2019.

Appendix

Appendix

Using Eqs. [2], [5] andnd Eq. [7], it can be readily shown that Eq. [4] can be expressed as

$$ N_{i}^{I} = \left[ {\frac{{\zeta_{S} }}{{\left( {\frac{{2\sigma_{a} }}{{F_{m} }} - 2Mk} \right)}}} \right]^{1/\alpha } \left( {\frac{{\xi_{o} }}{\xi }} \right)^{ - 1/2}, $$
(A1)

which can be rearranged to give

$$ \left( {\frac{{\Delta S_{th}^{I} }}{{F_{m} }} - 2Mk} \right)\left[ {N_{i}^{I} } \right]^{\alpha } = \zeta_{S} \left( {\frac{{\xi_{o} }}{\xi }} \right)^{ - 1/2}, $$
(A2)

where \( \Delta S_{th}^{I} = 2\sigma_{a} \) is the fatigue strength of the Ni-based alloy with inclusions. Similarly, Eq. [1] can be rearranged to give

$$ \left( {\frac{{\Delta S_{th}^{S} }}{{F_{m} }} - 2Mk} \right)\left[ {N_{i}^{S} } \right]^{\alpha } = \zeta_{S}, $$
(A3)

where \( \Delta S_{th}^{S} = 2\sigma_{a} \)is the fatigue strength of the Ni-based superalloy without inclusions. Dividing Eq. [A2] by Eq. [A3] leads one to

$$ \frac{{\Delta S_{th}^{I} - 2F_{m} Mk}}{{\Delta S_{th}^{S} - 2F_{m} Mk}} = \left( {\frac{\xi }{{\xi_{o} }}} \right)^{ - 1/2}, $$
(A4)

which can be simplified to

$$ \Delta S_{th}^{I} = \Delta S_{th}^{S} \left( {\frac{\xi }{{\xi_{o} }}} \right)^{ - 1/2} $$
(A5)

when the 2Mk term is negligible compared to the fatigue strengths. When the 2Mk is not negligible, the threshold stress for inclusion-induced crack nucleation can be obtained from Eq. [A4] to give

$$ \Delta S_{th}^{I} = 2F_{m} Mk + \left( {\Delta S_{th}^{S} - 2F_{m} Mk} \right)\left( {\frac{\xi }{{\xi_{o} }}} \right)^{ - 1/2}, $$
(A6)

which shows the scaling of the threshold stress \( \Delta S_{th}^{I} \) with the inclusion size is not exactly a power-law with the − 1/2 exponent when 2Mk is not zero, where k is the critical resolved shear stress for slip to occur.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chan, K.S. A Fatigue Life Model for Predicting Crack Nucleation at Inclusions in Ni-Based Superalloys. Metall and Mat Trans A 51, 1148–1162 (2020). https://doi.org/10.1007/s11661-019-05592-4

Download citation