Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Numerical Prediction and Experimental Validation of the Microstructure of Bearing Steel Ball Formation in Warm Skew Rolling

  • 42 Accesses

Abstract

Direct deformation spheroidization (DDS) of carbides in warm conditions can improve the microstructure and performance of bearing steel. In this study, based on the carbide spheroidization mechanism, a set of multiaxial constitutive equations was developed to predict the microstructure evolution of bearing steel 52100 during warm skew rolling (SR). The derived multiaxial constitutive equations were implemented in DEFORM-3D software through a user subroutine. FE simulation of warm SR was performed to predict the formation and microstructure evolution of bearing steel balls (BSBs). The distribution of the normalized dislocation density, carbide phase transformation fraction and carbide spheroidization fraction within BSBs was predicted via FE simulation of warm SR. To validate the FE simulation results, warm SR experiments were conducted to produce BSB specimens with 30 mm diameter. The microstructure of BSB specimens was observed to analyze their microstructure distribution in the longitudinal and transversal sections. The predicted and experimental results were compared, and the results show that the predicted carbide spheroidization distribution agrees well with the experimental results. This indicates that the formation and microstructure of BSB during warm SR can be predicted well using the derived multiaxial constitutive equations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12

References

  1. 1.

    H. K. D. H. Bhadeshia: Prog. Mater. Sci., 2012, vol. 57, pp. 268-435.

  2. 2.

    T. He and Y.M. Huo: T. Indian I. Metals, 2017, 10, 1-9.

  3. 3.

    J. Tomczak, Z. Pater and T. Bulzak: Arch. Civ. Mech. Eng., 2014, vol. 14, pp. 104-113.

  4. 4.

    C.C. Hsu, J.H. Huang, W.C. Chen and Y.K. Fuh: Int. J. Adv. Manuf. Tech., 2017, vol. 89, pp. 2119-2128.

  5. 5.

    Z.H. Hu, B.Y. Wang and Z.H. Zheng: Front. Mech. Eng., 2018, 13, 17-24.

  6. 6.

    Z.H. Zheng, B.Y. Wang and Z.H. Hu: Chin. J. Eng., 2015, vol. 37, pp. 782-788.

  7. 7.

    G.X. Huang, B.S. Sun, W.F. Peng, X.D. Shu, W. Lu: Adv. Mater. Res., 2015, 1095, 837-841.

  8. 8.

    Z. Pater: Int. J. Mater Prod. Tec., 2016, vol. 53, pp. 137-142.

  9. 9.

    Z. Pater, J. Tomczak, J. Bartnicki, M. R. Lovell and P. L. Menezes: Int. J. Mach. Tool Manu., 2013, vol. 67, pp. 1-7.

  10. 10.

    Z. Pater: Metal., 2016, vol. 55, pp. 233-236.

  11. 11.

    P. Zhang and Y.D. Zhou: Mod. Manu. Eng., 2012, vol. 10, pp.116-119.

  12. 12.

    S.C. Yang and C.K. Chen: P. I. Mech. Eng. Part C, 2001, vol. 215, pp. 523-532.

  13. 13.

    L. Hua, Z.H. Hu: Part rolling forming technology, Chemical industry press, Beijing, 2010, pp.154-168.

  14. 14.

    Q. Cao, L. Hua and D.S. Qian: J. C. Sou. Uni., 2015, vol. 22, pp. 1175-1183.

  15. 15.

    Q. Cao, L. Hua and D.S. Qian: Bear., 2015, vol. 1, pp.16-21.

  16. 16.

    Y.M. Huo, J.G. Lin, Q. Bai, B.Y. Wang, X.F. Tang and H.C. Ji: J. Mater. Process. Tech., 2017, vol. 239, pp. 359-369.

  17. 17.

    J.G. Lin: Fundamentals of Materials Modelling for Metals Processing Technologies, 2015, Imperial college Press, London, 2015, pp. 240-300.

  18. 18.

    A. Benaarbia, Y. Rae and W. Sun: Int. J. Mech. Sci., 2018, vol. 136, pp. 36-49.

  19. 19.

    B. Li, J. Lin and X. Yao: Int. J. Mech. Sci., 2002, vol. 44, pp. 987-1002.

  20. 20.

    Y.M. Huo, T. He, S.S. Chen, H.C. Ji and R.M. Wu: J. Manu. Process., 2019, vol. 44, pp. 113-124.

  21. 21.

    J. Lin, B.H. Cheong and X. Yao: J. Mater. Process. Tech., 2002, vol. 125, pp. 199-205.

  22. 22.

    Y.M. Huo, T. He, S.S. Chen and R.M. Wu: JOM, 2018, vol. 70, pp.1112-1117.

  23. 23.

    Y.M. Huo, Q. Bai, B.Y. Wang, J.G. Lin and J. Zhou: J. .Mater. Process. Tech., 2015, vol. 223, pp. 274-283.

  24. 24.

    T. He, Y.M. Huo, X.J. Shi and S.S. Chen: Metall. Mater. Trans. A, 2019, vol. 50, pp. 926-946.

  25. 25.

    Z. Pater: Arch. Metall. Mater., 2017, vol. 62, pp. 85-90.

  26. 26.

    J. Tomczak, Z. Pater and J. Bartnicki: Arch. Metall. & Mater., 2013, vol. 58, pp. 1071-1076.

  27. 27.

    H. Hwang and B.C.D. Cooman: Steel Res. Int., 2016, vol. 87, pp. 112-125.

  28. 28.

    S.D. Gu, L.W. Zhang, C.X. Yue, J.H. Ruan, J.L. Zhang and H.J. Gao: Comp. Mater. Sci., 2011, vol. 50, pp. 1951-1957.

  29. 29.

    S. Gu, L.W. Zhang, Z. Chi, J.H. Ruan, Z.Yu: J. of Mater. Eng. Perform., 2013, vol. 24,pp.1790-1798.

  30. 30.

    C.X. Yue, L.W. Zhang, J.H. Ruan and H.J. Gao: Appl. Math. Model., 2010, 34, 2644-2653.

  31. 31.

    J. Guo and D.S. Qian: J. Plast. Eng., 2014, vol. 21, pp. 40-45.

  32. 32.

    A. Lahiri, P. Shanthraj and F. Roters: Model. Simul. Mater. Sci. Eng., 2019, vol. 27, pp.1-28.

  33. 33.

    D.X. Han, L.X. Du, B. Zhang and R.D.K. Misra: J. Mater. Sci., 2019, vol. 54, pp. 2612-2627.

  34. 34.

    S. Guk, R. Kawalla and U. Prahl: Steel Res. Int., 2019, vol. 90. 40-47.

  35. 35.

    B. Romantsev, A. Goncharuk, A. Aleshchenko, Y. Gamin and M. Mintakhanov: Int. J. Adv. Manuf. Tech., 2018, vol. 97, pp. 3223-3230.

  36. 36.

    D. J. Politis, J. Lin, T. A. Dean and D. S. Balint: J. Mater. Process. Tech., 2014, vol. 214, pp. 2248-2260.

Download references

Acknowledgments

This project is funded by the National Natural Science Foundation of China (Grant No. 51805314), National Key Research and Development Program of China (Grant No. 2018YFB1307900), Shanghai Science and Technology Commission (Grant No. 16030501200), Shanghai University of Engineering and Science (Grant Nos. E3-0903-17-01006 and E3-0501-18-01002).

Author information

Correspondence to Yuanming Huo or Tao He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 20, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huo, Y., He, T., Wang, B. et al. Numerical Prediction and Experimental Validation of the Microstructure of Bearing Steel Ball Formation in Warm Skew Rolling. Metall and Mat Trans A 51, 1254–1263 (2020). https://doi.org/10.1007/s11661-019-05589-z

Download citation