Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Creep Performance Modeling of Modified 9Cr-1Mo Steels with Oxidation


In this study, the deformation-mechanism-based true-stress (DMTS) creep model is modified to include oxidation influence on the long-term creep performance of modified 9Cr-1Mo steels. An area-deduction method is introduced to evaluate oxide scale formation on the creep coupons, which is incorporated into the DMTS model formulated based on intragranular dislocation glide (IDG), intragranular dislocation climb (IDC), and grain boundary sliding (GBS) mechanisms, in modifying the true stress. Thus, the modified DMTS model can not only describe the creep curve, but also predict the long-term creep life and failure mode, which is shown to be in good agreement with the creep data generated in the authors’ laboratory as well as by the National Institute for Materials Science (NIMS) of Japan for long-term (> 104 hours) creep life prediction on Grade 91 steels. In particular, the predictability of the model is demonstrated in comparison with the Larson–Miller parameter method. In addition, the modified DMTS model provides quantitative information of mechanism partitioning, insinuating the failure mode via intragranular/intergranular deformation. Therefore, it has advantages over the empirical models in providing physical insights of creep failure, which can be useful to material design for performance optimization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    E.N. DaC Andrade: Proc. R. Soc. A, 1910, vol. 90, pp.329-42.

  2. 2.

    2.H. J. Frost and M. F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Elmsford, NY, 1982, pp. 1-19.

  3. 3.

    T.G. Langdon: Philos. Mag. Phil. Mag., 1970, vol. 22, pp. 689-700.

  4. 4.

    4.H. Lüthy, R.A. White, and O.D. Sherby: Mater. Sci. Eng., 1979, vol. 39, pp. 211–16.

  5. 5.

    5.X.J. Wu and A.K. Koul: Metall. Mater. Trans. A, 1995, vol. 26, pp. 905–14.

  6. 6.

    6.F. Larson and J. Miller: Trans. ASME, 1952, vol. 74, p. 765.

  7. 7.

    7.F. C. Monkman and N. J. Grant: ASTM Proceeding, 1956, vol. 56, pp. 593–620.

  8. 8.

    8.B. Wilshire and P.J. Scharning: Mater. Sci. Technol., 2009, vol. 25, pp. 243-48.

  9. 9.

    Allen and S. Garwood: Energy Materials-Strategic Research Agenda. Q2, Materials Energy Review, the Institute of Materials, Minerals and Mining, London, 2007.

  10. 10.

    K. Kimura and Y. Takahashi: Proc. ASME 2012 Press. Vessel. Pip. Conf., 2012, pp. 1–8.

  11. 11.

    11.K. Kimura, M. Tabuchi, Y. Takahashi, K. Yoshida, and K. Yagi: Int. J. Microstruct. Mater. Prop., 2011, vol. 6, p. 72.

  12. 12.

    K. Kimura and M. Yaguchi: in Proc. ASME. Pressure Vessels and Piping Conference, Volume 6B: Materials and Fabrication, 2016, p. 9.

  13. 13.

    J. D. Parker: in Proc. Sustainable Industrial Processing Summit & Exhibition 2018, Vol. 6, 4–7 November 2018, Rio De Janeiro, Brazil.

  14. 14.

    14.M.F. Ashby and B.F. Dyson: Fracture 84, 1984, pp. 3–30.

  15. 15.

    15.B.F. Dyson and S. Osgerby: Mater. Sci. Technol., 1987, vol. 3, pp. 545-53.

  16. 16.

    16.X.Z. Zhang, X.J. Wu, R. Liu, J. Liu, and M.X. Yao: Mater. Sci. Eng. A, 2017, vol. 689, pp. 345–52.

  17. 17.

    17.X. J. Wu, S. Williams, and D. Gong: J. Mater. Eng. Perform., 2012, vol. 21: pp. 2255-62.

  18. 18.

    National Institute for Materials Science (Japan): Creep Data Sheet (CDS), No. 43A, 10 Oct 2016.

  19. 19.

    19.M. Danielewski: Solid State Phenomena, 1992, vol. 21&22, pp.103-134.

  20. 20.

    20.B.F. Dyson and T.B. Gibbons: Acta Metall., 1987, vol. 35, pp. 2355-69.

  21. 21.

    21.F. Abe: Metall. Mater. Trans. A., 2015, vol. 46, pp. 5610–25.

  22. 22.

    22.F. Abe: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 565–69.

  23. 23.

    F. Abe, M. Taneike, and K. Sawada: Int. J. Press. Vessel. Pip., 2007, vol. 84, pp. 3–12.

  24. 24.

    24.M. Yurechko, C. Schroer, O. Wedemeyer, A. Skrypnik, and J. Konys: Journal of Nuclear Materials, 2011, vol. 419, pp. 320–8.

  25. 25.

    25.P. Mathiazhagan and S. Khanna: High Temp. Mater. Proc., 2011, vol.1–2, pp. 43–50.

  26. 26.

    27.X.Z. Zhang, X.J. Wu, R. Liu, and M.X. Yao: Mater. Sci. Eng. A, 2019, vol. 743, pp. 418-24.

  27. 27.

    28.T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, and K.K. Rink: Mater. Sci. Eng. A, 2013, vol. 565, pp. 382–91.

Download references


The authors are grateful for the CRD funding from Natural Science & Engineering Research Council of Canada (NSERC) (Grant No. 100979-NSERC-CRD-2013), the collaborative support from National Research Council Canada (NRC) and both financial and in-kind support from Kennametal Stellite Inc.

Author information

Correspondence to X. J. Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 4, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, X.J., Zhang, X.Z., Liu, R. et al. Creep Performance Modeling of Modified 9Cr-1Mo Steels with Oxidation. Metall and Mat Trans A 51, 1134–1147 (2020). https://doi.org/10.1007/s11661-019-05588-0

Download citation