Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

High-Resolution Residual Stress Mapping of Magnesium AZ80 Friction Stir Welds for Three Processing Conditions

  • 104 Accesses

Abstract

Low-angle synchrotron transmission diffraction has been used to create high-resolution 2D residual strain maps of friction stir welds made with three processing conditions. These spatial maps of residual strain reveal local concentrations not detectable by line scans, and confirm that the asymmetric material flow known to produce asymmetric temperature and texture distributions also results in asymmetric residual strain distributions. The experimental set-up permitted simultaneous measurement of both texture and strain, which provides strong evidence against the correlation of these features in magnesium friction stir welds. Mapping diffraction peak width across the weld provides insight into the spatial distribution of dislocations and microstrains, and indicates locations of interest for higher resolution research such as TEM. A diffraction method is presented to determine the solute content of a ternary system using the lower symmetry of a non-cubic system, which can be extended to detecting the onset of precipitation among other applications. Comparison of three friction stir-welding conditions shows how the residual strains at the interface can reverse from compressive to tensile with decrease in the heat input, explaining a significant disparity in the literature results. Lower residual stress values were found to be well-correlated with improved transverse tensile behavior.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50, pp. 1–78.

  2. 2.

    R. Zettler, A.C. Blanco, J.F. dos Santos, S. Marya. In Magnesium Technology 2005, pages 409–423, editors N.R. Neelameggham, H.I. Kaplan, and B.R. Powell, San Francisco, CA; USA, 2005. TMS.

  3. 3.

    J. Hiscocks, B.J. Diak, A.P. Gerlich, and M.R. Daymond: Mater. Sci. Technol., 2017, vol. 33, pp. 189–99.

  4. 4.

    J. Yang, D.R. Ni, D. Wang, B.L. Xiao, and Z.Y. Ma: Mater. Charact., 2014, vol. 96, pp. 142–50.

  5. 5.

    W. Callister. Materials Science and Engineering, An introduction. John Wiley & Sons Inc, 2000.

  6. 6.

    M.M. Avedesian, Hugh Baker, editors. Magnesium and Magnesium Alloys. ASM International, (1999).

  7. 7.

    P.J. Withers. Residual Stress: Definition. In The Encyclopedia of Materials: Science and Technology, pages 8110–8113, editor K.H.J. Buschow, Elsevier, (2001).

  8. 8.

    M.E. Fitzpatrick, A. Lodini, editors. Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation. Taylor and Francis, (2003).

  9. 9.

    W. Woo: Severe Plastic Deformation Using Friction Stir Processing, and the Characterization of Microstructure and Mechanical Behavior Using Neutron Diffraction. Ph.D. Thesis, University of Tennessee, 2006.

  10. 10.

    K. Masubuchi. Residual Stresses and Distortion in Welds. In The Encyclopedia of Materials: Science and Technology, pages 8121–8126, editor K.H.J. Buschow, Elsevier, (2001).

  11. 11.

    W. Woo, H. Choo, D.W. Brown, M.A.M. Bourke, Z. Feng, S.A. David, C.R. Hubbard, and P.K. Liaw. Appl. Phys. Lett., 2005, 86:231902.

  12. 12.

    M. Riahi and H. Nazari: Int. J. Adv. Manuf. Technol., 2011, vol. 55, pp. 143–52.

  13. 13.

    H. Lombard, D.G. Hattingh, A. Steuwer, and M.N. James: Mater. Sci. Eng. A, 2009, vol. 501, pp. 119–24.

  14. 14.

    W. Woo, H. Choo, M.B. Prime, Z. Feng, and B. Clausen: Acta Mater., 2008, vol. 56, pp. 1701–11.

  15. 15.

    H. Jamshidi Aval, S. Serajzadeh, N. A. Sakharova, A. H. Kokabi, and A. Loureiro. J. Mater. Sci., 2012, 47:5428–5437.

  16. 16.

    P. Staron, M. Koak, and S. Williams: Appl. Phys. A, 2002, vol. 74, pp. S1161–62.

  17. 17.

    A. Steuwer, M.J. Peel, and P.J. Withers: Mater. Sci. Eng. A, 2006, vol. 441, pp. 187–96.

  18. 18.

    M.T. Hutchings, P.J. Withers, T.M. Holden, and T. Lorentzen: Introduction to the Characterization of Residual Stress by Neutron Diffraction, CRC Press, Boca Raton, FL, 2005.

  19. 19.

    W. Woo and H. Choo: Sci. Technol. Weld. Join., 2011, vol. 16, pp. 267–72.

  20. 20.

    W. Woo, Z. Feng, X.-L. Wang, D.W. Brown, B. Clausen, K. An, H. Choo, C.R. Hubbard, and S.A. David: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 298–303.

  21. 21.

    S. Kandaswaamy: Thermal Field Mapping Technique for Friction Stir Process. Ph.D. Thesis, Auburn University, 2009.

  22. 22.

    A. Fehrenbacher: Enhancing Friction Stir Welding Through Process Instrumentation and Closed-Loop Control. Ph.D. Thesis, University of Wisconsin, 2012.

  23. 23.

    L.L. Huetsch, J. Hilgert, K. Hertzberg, J.F. dos Santos, and N. Huber: in Mg2012: 9th International Conference on Magnesium Alloys and Their Applications, W.J. Poole and K.U. Kainer, eds., Vancouver, Canada, 2012, pp. 403–10.

  24. 24.

    W. Woo, H. Choo, D.W. Brown, B. Clausen, Z. Feng, and P.K. Liaw: Mater. Sci. Forum, 2007, vol. 539–543, pp. 3795–3800.

  25. 25.

    Z. Feng, X.-L. Wang, S.A. David, and P.S. Sklad: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 348–56.

  26. 26.

    M.B. Prime, T. Gnäupel-Herold, J.A. Baumann, R.J. Lederich, D. Bowden, and R. Sebring: Acta Mater., 2006, vol. 54, pp. 4013–21.

  27. 27.

    P.J. Webster, D. Oosterkamp, P.A. Browne, D.J. Hughes, W.P. Kang, P.J. Withers, and G.B.M. Vaughan: J. Strain Anal., 2001, vol. 36, pp. 61–70.

  28. 28.

    B. Clausen, C.N. Tomé, D.W. Brown, and S.R. Agnew: Acta Mater., 2008, vol. 56, pp. 2456–68.

  29. 29.

    M.R. Daymond and P.J. Withers: Scripta Mater., 1996, vol. 35, pp. 1229–34.

  30. 30.

    A.M. Korsunsky, K.E. Wells, and P.J. Withers: Scripta Mater., 1998, vol. 39, pp. 1705–12.

  31. 31.

    J. Hanan, E. Üstündag, and J.D. Almer: Adv. X-Ray Anal., 2004, vol. 47, pp. 174–80.

  32. 32.

    S. Celotto: Acta Mater., 2000, vol. 48, pp. 1775–87.

  33. 33.

    I.A. Yakubtsov, B.J. Diak, C.A. Sager, B. Bhattacharya, W.D. MacDonald, and M. Niewczas: Mater. Sci. Eng. A, 2008, vol. 496, pp. 247–55.

  34. 34.

    S.H.C. Park, Y.S. Sato, and H. Kokawa: J. Mater. Sci., 2003, vol. 38, pp. 4379–83.

  35. 35.

    A.H. Feng, B.L. Xiao, Z.Y. Ma, and R.S. Chen: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2447–56.

  36. 36.

    J. Hiscocks: Getting Started with Low-Angle Transmission Synchrotron Diffraction, ResearchGate, 2017. www.researchgate.net/publication/321025036_Getting_Started_with_Low-Angle_Transmission_Synchrotron_Diffraction_part_1_of_3. Accessed 7 Jan 2019.

  37. 37.

    A.D. Krawitz and R.A. Winholtz: Mater. Sci. Eng. A, 1994, vol. 185A, pp. 123–30.

  38. 38.

    D. Hardie and R.N. Parkins: Philos. Mag., 1959, vol. 4, pp. 815–25.

  39. 39.

    D.J. Hughes, M.N. James, D.G. Hattingh, and P.J. Webster: J. Neutron Res., 2003, vol. 11, pp. 289–93.

  40. 40.

    B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Reading, MA, 1956, p. 388.

  41. 41.

    E. Gliozzo, W.A. Kockelmann, and G. Artioli: J. Appl. Crystallogr., 2017, vol. 50, pp. 49–60.

  42. 42.

    M. Gharghouri: Ph.D. Thesis, McMaster University, 1996.

  43. 43.

    D. Tromans: Int. J. Recent Res. Appl. Stud., 2011, vol. 6, pp. 462–83.

  44. 44.

    U.F. Kocks, C.N. Tomé, H.-R. Wenk: Texture and Anisotropy, Cambridge University Press, 1998, pp. 289

  45. 45.

    T. Ungár: Scripta Mater., 2004, vol. 51, pp. 777–81.

  46. 46.

    W. Woo, L. Balogh, T. Ungár, H. Choo, and Z. Feng: Mater. Sci. Eng. A, 2008, vol. 498, pp. 308–13.

  47. 47.

    J. Hiscocks, B.J. Diak, A.P. Gerlich, and M.R. Daymond: Mater. Charact., 2016, vol. 122, pp. 22–29.

  48. 48.

    M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1955–64.

  49. 49.

    R. Xin, B. Li, A. Liao, Z. Zhou, and Q. Liu: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2500–08.

Download references

Acknowledgements

The authors would like to acknowledge S. Sahraei and M. Haghshenas for creating the friction stir welds, and C. Cochrane and T. Skippon for conducting several of the scans at APS. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Funding for this research was courtesy of Auto21 as Project C504-CTW and NSERC.

Author information

Correspondence to J. Hiscocks.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 8, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 963 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hiscocks, J., Daymond, M.R., Diak, B.J. et al. High-Resolution Residual Stress Mapping of Magnesium AZ80 Friction Stir Welds for Three Processing Conditions. Metall and Mat Trans A 51, 1195–1207 (2020). https://doi.org/10.1007/s11661-019-05585-3

Download citation