Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Migration Pinning and Roughening Transition of a Ni Grain Boundary

Abstract

To date, much research has been conducted into the effect of migration pinning on the grain size in polycrystalline materials. However, effects of migration pinning on the grain-boundary structure and its transition have not been illuminated. Here, using transmission electron microscopy (TEM) we have explored the pinning effects for the grain boundary in a Ni bicrystal. During TEM specimen preparation, a hole was intentionally drilled in the middle of the grain boundary as a pinning point against grain-boundary migration. The specimen was heated to 600 °C. The grain boundary is driven to migrate by both the surface energy anisotropy and the total strain energy reduction. Grain-boundary facets with a plane orientation of {0 3 2}//{1 1 1} appear near the hole. The facets undergo a structural transition from atomically flat to rough with increasing distance from the hole. A pinning force exerted by the hole suppresses the migration of the grain boundary near the hole, indicating that the grain-boundary region away from the hole is subjected to a higher driving force. It certainly appears that the phenomenon originates from a change in driving force with the distance from the hole, being a signature of kinetic roughening.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    1.C.S. Smith: Trans. AIME, 1948, vol. 175, pp. 15–51.

  2. 2.

    2.F. Hässner: Recrystallization of Metallic Materials. Dr. Riederer-Verlag, Stuttgart, 1978.

  3. 3.

    G. Gottstein: in Physical Foundations of Materials Science, Chap. 7. Springer, Berlin, 2004.

  4. 4.

    4.F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena Second edition. Elsevier, Amsterdam, 2004.

  5. 5.

    5.J. Zhou, S. Zhang, X. Wang, B. Zhao, X. Dong, and L. Zhang: Scripta Mater., 2016, vol. 116, pp. 100–103.

  6. 6.

    6.K. Huang, K. Zhang, K. Marthinsen, and R.E. Logé: Acta Mater., 2017, vol. 141, pp. 360–373.

  7. 7.

    7.R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–274.

  8. 8.

    8.P.A. Manohar, M. Ferry, and T. Chandra: ISIJ Int., 1998, vol. 38, pp. 913–924.

  9. 9.

    9.G. Couturier, C. Maurice, and R. Fortunier: Philos. Mag., 2003, vol. 83, pp. 3387–3405.

  10. 10.

    10.G. Couturier, R. Doherty, C. Maurice, and R. Fortunier: Acta Mater., 2005, vol. 53, pp. 977–989.

  11. 11.

    11.N. Moelans, B. Blanpain, and P. Wollants: Acta Mater., 2007, vol. 55, pp. 2173–2182.

  12. 12.

    D.A. Porter, K.E. Easterling, and M.Y. Sherif: in Phase Transformations in Metals and Alloys, Chap. 3, 3rd ed., CRC Press, Boca Raton, 2009.

  13. 13.

    13.J.W. Cahn: Acta Metall., 1960, vol. 8, pp. 554-562.

  14. 14.

    J.P. Hirth and G.M. Pound: in Condensation and Evaporation: Nucleation and Growth Kinetics, Pergamon, Oxford, 1963, pp. 77–148.

  15. 15.

    15.G.H. Gilmer: J. Cryst. Growth, 1980, vol. 49, pp. 465–474.

  16. 16.

    16.S.D. Peteves and R. Abbaschian: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 1271-1286.

  17. 17.

    17.H.M. Cuppen, H. Meekes, W.J.P. van Enckevort, E. Vlieg, and H.J. F. Knops: Phys. Rev. B, 2004, vol. 69, p. 245404.

  18. 18.

    18.S.B. Lee and Y.-M. Kim: Acta Mater., 2009, vol. 57, pp. 5264–5269.

  19. 19.

    19.S.B. Lee, Y.-M. Kim, D.S. Ko, T.Y. Ahn, Y.W. Kim, and J. Park: Appl. Phys. Lett., 2010, vol. 96, p. 191906.

  20. 20.

    20.S.B. Lee, S.J. Yoo, Y.-M. Kim, J.G. Kim, and H.N. Han: Sci. Rep., 2016, vol. 6, p. 26493.

  21. 21.

    21.S.B. Lee, S.J. Yoo, and P. A. van Aken: Europhys Lett (EPL), 2017, vol. 120, p. 16002.

  22. 22.

    S.B. Lee, S.-Y. Lee, S.J. Yoo, Y. Kim, J.G. Kim, M. Kim, and H.N. Han: Phys. Rev. Mater., 2018, vol. 2, p. 113405.

  23. 23.

    23.R.F. Egerton, P. Li, and M. Malac: Micron, 2004, vol. 35, pp. 399–409.

  24. 24.

    24.T. Malis, S.C. Cheng, and R.F. Egerton: J. Electron. Microsc. Tech., 1988, vol. 8, pp. 193–200.

  25. 25.

    25.N. Fuschillo, M.L. Gimpl, and A.D. McMaster: J. Appl. Phys., 1966, vol. 37, pp. 2044–2051.

  26. 26.

    26.J.J. Aubert and J.J. Bacmann: Revue. Phys. Appl., 1987, vol. 22, pp. 515–518.

  27. 27.

    27.J.D. Garrett, P. Peralta, J.R. Michael, F. Chu, K.J. McClellan, and T.E. Mitchell: J. Cryst. Growth, 1999, vol. 205, pp. 515–522.

  28. 28.

    28.I.M. Kotelianski, V.B. Kravchenko, V.A. Luzanov, E.N. Mirgorodskaia, and A.T. Sobolev: J. Phys.: Conf. Ser., 2008, vol. 97, p. 012266.

  29. 29.

    29.R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K.A. Persson, and S.P. Ong: Sci. Data, 2016, vol. 3, p. 160080.

  30. 30.

    30.W.K. Burton, N. Cabrera, and F.C. Frank: Philos. Trans. Roy. Soc. Lond. Ser. A, 1951, vol. 243, pp. 299–358.

  31. 31.

    31.S.T. Chui and J.D. Weeks: Phys. Rev. B, 1976, vol. 14, pp. 4978–4982.

  32. 32.

    32.H. van Beijeren: Phys. Rev. Lett., 1977, vol. 38, pp. 993–996.

  33. 33.

    33.J. E. Avron, L.S. Balfour, C.G. Kuper, J. Landau, S.G. Lipson, and L.S. Schulman: Phys. Rev. Lett., 1980, vol. 45, pp. 814–817.

  34. 34.

    34.P.E. Wolf, F. Gallet, S. Balibar, E. Rolley, and P. Nozières: J. Phys. (Paris), 1985, vol. 46, pp. 1987–2007.

  35. 35.

    K.L. Merkle and L.J. Thompson: Mater. Lett., 2001, vol. 48, pp. 188–193.

Download references

Acknowledgments

Transnational Access to the TEMs at the Stuttgart Center for Electron Microscopy of the Max Planck Institute for Solid State Research is gratefully acknowledged. One of the authors (SBL) thanks Peter Kopold for his help at the TEMs at the Stuttgart Center for Electron Microscopy. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717–ESTEEM3. SBL also appreciates financial support from the Korea Basic Science Institute under the R&D program (Project No. D39700) supervised by the Ministry of Science and ICT (MSIT). This research was also supported by the National Research Foundation of Korea (NRF) grant funded by the MSIT [Nos. NRF-2019R1A2C2002073 (RIAM) and NRF- 2018R1A2B6006856].

Author information

Correspondence to Sung Bo Lee or Heung Nam Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 19, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1532 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S.B., Jung, J., Yoo, S.J. et al. Migration Pinning and Roughening Transition of a Ni Grain Boundary. Metall and Mat Trans A 51, 1067–1074 (2020). https://doi.org/10.1007/s11661-019-05579-1

Download citation