Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Microstructure Evolution of a Simulated Coarse-Grained Heat-Affected Zone of T23 Steel During Aging

  • 76 Accesses

Abstract

In this work, simulated CGHAZ of T23 steel was produced via a thermomechanical simulator, and then the CGHAZ specimens were aged at 650 °C for 0 to 240 hours to simulate the microstructure evolution of as-welded CGHAZ during service. Microstructure change and carbide precipitation were observed by OM, SEM, EBSD and TEM + EDS. Carbide precipitation kinetics in T23 steel at 650 °C was calculated for comparison with the experiment results. The hardness change of CGHAZ during aging was detected, and the effect of microstructure evolution on hardness was analyzed. The results showed that the CGHAZ of T23 steel exhibited a mixed microstructure of martensite and bainite with high hardness in as-welded condition. After aging at 650 °C, the microstructure recovered, recrystallization occurred, the dislocation density decreased, and the lath width increased. Consequently, the hardness dropped, the drop depending on the aging time. In the early stage of aging (before 24 hours), the precipitations inside the grain were mainly M3C, M7C3 and a small number of M23C6 carbides, while the precipitation at the grain boundaries was M23C6. The precipitation of M23C6 caused the hardness to drop rapidly. When aged for 24 to 48 hours, MX precipitated inside grains extensively. The precipitation hardening produced by MX could slow down the decline of hardness. As the aging proceeded, carbide precipitated and transformed as follows: M3C → M3C + M7C3 + M23C6 → M3C + M7C3 + M23C6 + MX → M23C6 + MX + M6C. W-rich carbides precipitated in some grain boundaries of CGHAZ during aging, which may be related to the W segregation at those grain boundaries.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    F. Masuyama, T. Yokoyama, Y. Sawaragi, and A. Iseda: Materials for Advanced Power Engineering (Part 1), Kluwer, New York, 1994, pp. 173–81.

  2. 2.

    K. Miyata, Y. Sawaragi: ISIJ Int., 2001, vol. 41, pp. 281-289.

  3. 3.

    [3] K. Miyata, M. Igarashi, Y. Sawaragi: ISIJ Int., 1999, vol. 39, pp 947-954.

  4. 4.

    J. Arndt, K. Haarmann, G. Kottmann, J.C. Vaillant, W. Bendick, K. Kubla, A. Arbab, F. Deshayes. The T23/T24 Book, V&M, Düsseldorf, 2000.

  5. 5.

    [5] M. Igarashi, M. Yoshizawa, H. Matsuo, O. Miyahara, A. Iseda: Mat. Sci. Eng. A-Struct., 2009, vol. 510, pp. 104-109.

  6. 6.

    W. Bendick, J. Gabrel, B. Hahn, B. Vandenberghe: Int. J. Pres. Ves. Pip., 2007, vol. 84, pp. 13-20.

  7. 7.

    X.W. Ji, P. Duan, and J. Li: Symposium on Sinicization of New Type steels for 600 MW/1000 MW Ultra-Supercritical Units, Yangzhou, 2009.

  8. 8.

    H. Zhao, R. Ling, J. Jia, J. Zhao: Proceedings of the CSEE, 2011, vol. 31, pp. 107-113.

  9. 9.

    X. Wang, D. Zhu, L. Hu, X.Q. Li, C. Yang, Z.X. Ge, Q.X. Yang: Proceedings of the CSEE, 2015, vol. 35, pp. 154-161.

  10. 10.

    H.G. Long, Y. Long, H.D. Chen: Electric Power, 2011, vol. 44, pp. 70-73.

  11. 11.

    Y.B. Ren, W. Wang, S.B. Ping: Heat Treatment of Metals, 2016, vol. 41, pp. 199-203.

  12. 12.

    Y. Li, X. Wang, J. Wang, A. Chen: J. Mater. Process. Tech., 2019, vol. 266, pp. 73-81.

  13. 13.

    J.G. Nawrocki, J.N. Dupont, C.V. Robino, J.D. Puskar, A.R. Marder: Weld. J., 2003, vol. 82, pp. 25s-35s.

  14. 14.

    P. Mohyla, V. Foldyna: Mat. Sci. Eng. A-Struct., 2009, vol. 510–511, pp. 234-237.

  15. 15.

    A. Zieliński, G. Golański, M. Sroka, P. Skupień: Mater. High Temp., 2016, vol. 33, pp. 154-163.

  16. 16.

    [16] Y. Deng, L. Zhu, Q. Wang, F. Zou: Steel Res. Int., 2006, vol. 77, pp. 844-848.

  17. 17.

    [17] P. Tao, C. Zhang, Z.G. Yang, H. Takeda: Acta. Metall. Sin., 2009, vol. 45, pp. 51-57.

  18. 18.

    J.G. Nawrocki, J.N. DuPont, A.R. Marder, C.V. Robino: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2585-2594.

  19. 19.

    N. Komai, F. Masuyama, M. Igarashi: J. Press. Ves. Tech., 2005, vol. 127, pp. 190-196.

  20. 20.

    Q.J. Wang, F.M. Zhou, Y.Q. Deng, L.H. Zhu: Baosteel Technology, 2006, vol. 24, pp. 18-22.

  21. 21.

    A. Fedoseeva, N. Dudova, U. Glatzel, R. Kaibyshev: J. Mater. Sci., 2016, vol. 51, pp. 9424-9439.

  22. 22.

    D.Y. Lee, E.V. Barrera, J.P. Stark, H.L. Marcus: Metall. Trans. A, 1984, vol. 15, pp. 1415-1430.

  23. 23.

    N. Gope, A. Chatterjee, T. Mukherjee, D.S. Sarma: Metall. Trans. A, 1993, vol. 24, pp. 315-326.

  24. 24.

    M.C. Tsai, C.S. Chiou, J.R. Yang: J. Mater. Sci., 2003, vol. 38, pp. 2373-2391.

  25. 25.

    Y. Zhang, L. Miao, X. Wang, H. Zhang, J. Li: Mater. Trans., 2009, vol. 50, pp. 2507-2511.

  26. 26.

    A. Aghajani, C. Somsen, J. Pesicka, W. Bendick, B. Hahn, G. Eggeler: Mat. Sci. Eng. A-Struct., 2009, vol. 510, pp. 130-135.

  27. 27.

    A. Zieliński, G. Golański, M. Sroka: Mat. Sci. Eng. A-Struct., 2017, vol. 682, pp. 664-672.

  28. 28.

    J. Dobrzański, A. Hernas: J. Mater. Process. Tech., 1995, vol. 53, pp. 101-108.

  29. 29.

    A. Kroupa, A. Výrostková, M. Svoboda, J. Janovec: Acta. Mater., 1998, vol. 46, pp. 39-49.

  30. 30.

    G. Golański: Journal of Pressure Vessel Technology, 2010, vol. 132, pp. 645031-645035.

  31. 31.

    X. Wang, X. Li, C. Yang, Z. Ge, X. Yang, Y. Ren: Journal of Chines Society of Power Engnieering, 2015, vol. 35, pp. 325-330.

  32. 32.

    A. Dhooge, R.E. Dolby, J. Sebille, R. Steinmetz, A.G. Vinckier: Int. J. Pres. Ves. Pip., 1978, vol. 6, pp. 329-409.

Download references

Acknowledgments

The authors are grateful for projects supported by the National Natural Science Foundation of China (51574181) and Sichuan Science and Technology Program (2018JY0668).

Author information

Correspondence to Xue Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 5, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, X. Microstructure Evolution of a Simulated Coarse-Grained Heat-Affected Zone of T23 Steel During Aging. Metall and Mat Trans A 51, 1183–1194 (2020). https://doi.org/10.1007/s11661-019-05572-8

Download citation