Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Kinetic Constraints of δ-Ferrite to the Formation of Kappa (κ) Carbide in a Fe-4Mn-9Al-0.3C Wt Pct Low-Density Steel

  • 115 Accesses


Aluminum is the key ingredient in low-density steels. It leads to the formation of δ-ferrite in a large fraction. In order to study the influence, two different experimental approaches were devised. In a first of its kind, the sample was arc melted in an argon atmosphere. Later, the same alloy composition was ball milled and sintered at 1000 °C by avoiding liquid to δ-ferrite in the system. In the current study, the comparative analysis led by DICTRA simulation indicates that kappa (κ) carbide has difficulty forming in the present alloy system when δ-ferrite is already available, particularly during solidification casting.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    R. Rana: JOM, 2014, vol. 66, pp. 1730–33.

  2. 2.

    2. S. Chen, R. Rana, A. Haldar, and R.K. Ray: Progr. Mater. Sci., 2017, vol. 89, pp. 345–91.

  3. 3.

    A. Das, I. Manna, and S. Pabi: Acta Mater., 1999, vol. 47, pp. 1379–88.

  4. 4.

    I. Gutierrez-Urrutia and D. Raabe: Mater. Sci. Technol., 2014, vol. 30, 1099–1104.

  5. 5.

    Y. Minamino, Y. Koizum, N. Tsuji, N. Hirohata, K. Mizuuchi, and Y. Ohkanda: Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 133–43.

  6. 6.

    J.-B. Seol, D. Raabe, P.-P. Choi, H.-S. Park, J. Kwak, and C.-G. Park: Scripta Mater., 2013, vol. 68, pp. 348–53.

  7. 7.

    I. Gutierrez-Urrutia and D. Raabe: Scripta Mater., 2013, vol. 68, pp. 343–47.

  8. 8.

    P.-C. Chen, C.-G. Chao, and T.-F. Liu: Scripta Mater., 2013, vol. 68, pp. 380–83.

  9. 9.

    R. Rana, C. Liu, and R.K. Ray: Acta Mater., 2014, vol. 75, pp. 227–45.

  10. 10.

    Å. Gustafson: Mater. Sci. Eng. A, 2000, vol. 287, pp. 52–58.

  11. 11.

    S. Papaefthymiou, M. Bouzouni, and R.H. Petrov: Metal, 2018, vol. 8, p. 646.

  12. 12.

    “Diffusion Controlled Transformations in Multi-Component Systems,” DICTRA 24, version 2016b, Stockholm.

  13. 13.

    A. Bjärbo: Scand. J. Met., 2003, vol. 32, pp. 94–99.

  14. 14.

    S. Ghosh: Trans. Ind. Inst. Met., 2018, vol. 71, pp. 1265–78.

  15. 15.

    Thermo-Calc, Version S, Foundation of Comp. Thermo., Royal Institute of Technology, Stockholm, 2008.

  16. 16.

    H.W. Kerr, J. Cisse, and G.F. Bolling: Acta Metall., 1974, vol. 22, pp. 677–86.

  17. 17.

    H.L. Yi: JOM, 2014, vol. 66, pp. 1759–69.

  18. 18.

    H. Schneider: Foundry Trade J., 1960, vol. 108, pp. 562–63.

  19. 19.

    J.C. Ma, Y.S. Yang, W.H. Tong, Y. Fang, Y. Yu, and Z.Q. Hu: Mater. Sci. Eng. A, 2007, vol. 444, pp. 64–68.

Download references


The authors acknowledge the Department of Science and Technology, Government of India, for the financial support (File Number CRG/2018/002432), and Dr. P.P. Chattopadhyay for valuable remarks.

Author information

Correspondence to Sadhan Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 10, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sinha, M., Ahad, S., Chaudhry, A.K. et al. Kinetic Constraints of δ-Ferrite to the Formation of Kappa (κ) Carbide in a Fe-4Mn-9Al-0.3C Wt Pct Low-Density Steel. Metall and Mat Trans A 51, 809–817 (2020). https://doi.org/10.1007/s11661-019-05568-4

Download citation