Advertisement

In-Situ Study on Texture-Dependent Martensitic Transformation and Cyclic Irreversibility of Superelastic NiTi Shape Memory Alloy

  • Jianguang Shuai
  • Yao XiaoEmail author
Communication
  • 57 Downloads

Abstract

The texture-dependent mechanical response of superelastic NiTi sheet with dominant {111}<110> fiber is investigated via in-situ digital image correlation (DIC). A new parameter is introduced to evaluate and estimate material irreversibility. We find that transformation strain and cyclic irreversibility evolve nonmonotonically with tensile direction. We confirm that diffused fiber close to {110}<110> plays an important role in the variation of mechanical response.

Notes

One of the authors (YX) acknowledges the support from the Alexander von Humboldt Foundation. The authors are grateful for the support from the National Key Research and Development Program of China (Grant No. 2017YFB0701801).

References

  1. 1.
    K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511–678.CrossRefGoogle Scholar
  2. 2.
    R. Delville, B. Malard, J. Pilch, P. Sittner, and D. Schryvers: Acta Mater., 2010, vol. 58, pp. 4503–15.CrossRefGoogle Scholar
  3. 3.
    R. Delville, B. Malard, J. Pilch, P. Sittner, and D. Schryvers: Int. J. Plast., 2011, vol. 27, pp. 282–97.CrossRefGoogle Scholar
  4. 4.
    Y. Chen, O. Tyc, L. Kadeřávek, O. Molnárová, L. Heller, and P. Šittner: Mater. Design, 2019, vol. 174, p. 107797.CrossRefGoogle Scholar
  5. 5.
    L. Heller, P. Šittner, P. Sedlák, H. Seiner, O. Tyc, L. Kadeřávek, P. Sedmák, and M. Vronka: Int. J. Plast., 2019, vol. 116, pp. 232–64.CrossRefGoogle Scholar
  6. 6.
    S. Gao and S. Yi: Mater. Sci. Eng. A, 2003, vol. 362, pp. 107–11.CrossRefGoogle Scholar
  7. 7.
    S.H. Chang and S.K. Wu: Scripta Mater., 2004, vol. 50, pp. 937–41.CrossRefGoogle Scholar
  8. 8.
    K. Kim and S. Daly: Smart Mater. Struct., 2013, vol. 22, p. 075012.CrossRefGoogle Scholar
  9. 9.
    Y. Liu: Acta Mater., 2015, vol. 95, pp. 411–27.CrossRefGoogle Scholar
  10. 10.
    W.N. Hsu, E. Polatidis, M. Šmíd, S.V. Petegem, N. Casati, and H.V. Swygenhoven: Acta Mater., 2019, vol. 167, pp. 149–58.CrossRefGoogle Scholar
  11. 11.
    G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner: Mater. Sci. Eng. A, 2004, vol. 378, pp. 24–33.CrossRefGoogle Scholar
  12. 12.
    A. Yawny, J. Olbricht, M. Sade, and G. Eggeler: Mater. Sci. Eng. A, 2008, vols. 481–482, pp. 86–90.CrossRefGoogle Scholar
  13. 13.
    C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, and A. Tuissi: Int. J. Fatigue, 2014, vol. 66, pp. 78–85.CrossRefGoogle Scholar
  14. 14.
    P. Sedmak, P. Sittner, J. Pilch, and C. Curfs: Acta Mater., 2015, vol. 94, pp. 257–70.CrossRefGoogle Scholar
  15. 15.
    X. Xie, Q. Kan, G. Kang, F. Lu, and K. Chen: Mater. Sci. Eng. A, 2016, vol. 671, pp. 32–47.CrossRefGoogle Scholar
  16. 16.
    L. Zheng, Y. He, and Z. Moumni: Int. J. Plast., 2017, vol. 90, pp. 116–45.CrossRefGoogle Scholar
  17. 17.
    Y. Xiao, P. Zeng, and L. Lei: Int. J. Plast., 2018, vol. 107, pp. 164–88.CrossRefGoogle Scholar
  18. 18.
    C. Yu, G. Kang, and Q. Kan: Int. J. Plast., 2018, vol. 105, pp. 99–127.CrossRefGoogle Scholar
  19. 19.
    C. Yu, G. Kang, X. Xie, and W. Rao: Mech. Mater., 2018, vol. 125, pp. 35–51.CrossRefGoogle Scholar
  20. 20.
    L. Heller, H. Seiner, P. Šittner, P. Sedlák, O. Tyc, and L. Kadeřávek: Int. J. Plast., 2018, vol. 111, pp. 53–71.CrossRefGoogle Scholar
  21. 21.
    H. Sehitoglu, R. Anderson, I. Karaman, K. Gall, and Y. Chumlyakov: Mater. Sci. Eng. A, 2001, vol. 314, pp. 67–74.CrossRefGoogle Scholar
  22. 22.
    K. Gall, H. Sehitoglu, R. Anderson, I. Karaman, Y.I. Chumlyakov, and I.V. Kireeva: Mater. Sci. Eng. A, 2001, vol. 317, pp. 85–92.CrossRefGoogle Scholar
  23. 23.
    K. Gall and H.J. Maier: Acta Mater., 2002, vol. 50, pp. 4643–57.CrossRefGoogle Scholar
  24. 24.
    S.W. Robertson, V. Imbeni, H.R. Wenk, and R.O. Ritchie: J. Biomed. Mater. Res. A, 2005, vol. 72, pp. 190–99.CrossRefGoogle Scholar
  25. 25.
    G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, and E.P. George: J. Alloy Compd., 2015, vol. 623, pp. 348–53.CrossRefGoogle Scholar
  26. 26.
    A. Ahadi, Y. Matsushita, T. Sawaguchi, Q.P. Sun, and K. Tsuchiya: Acta Mater., 2017, vol. 124, pp. 79–92.CrossRefGoogle Scholar
  27. 27.
    Y. Xiao, P. Zeng, L. Lei, and Y. Zhang: Mater. Design, 2017, vol. 134, pp. 111–20.CrossRefGoogle Scholar
  28. 28.
    K.F. Hane and T.W. Shield: Acta Mater., 1999, vol. 47, pp. 2603–17.CrossRefGoogle Scholar
  29. 29.
    K. Kim and S. Daly: Exp. Mech., 2011, vol. 51, pp. 641–52.CrossRefGoogle Scholar
  30. 30.
    P. Chowdhury and H. Sehitoglu: Prog. Mater. Sci., 2017, vol. 85, pp. 1–42.CrossRefGoogle Scholar
  31. 31.
    S. Alkan, Y. Wu, and H. Sehitoglu: Extreme Mech. Lett., 2017, vol. 15, pp. 38–43.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Institute for MaterialsRuhr University BochumBochumGermany

Personalised recommendations