3D Crystallographic Analysis of Grain Boundaries of Austenite Transformed from Ferrite on Heating in Fe-Mn-C Alloy

  • Kengo HataEmail author
  • Kaori Kawano
  • Masaaki Sugiyama
  • Tomoyuki Kakeshita
Topical Collection: 3D Materials Science
Part of the following topical collections:
  1. 3D Materials Science


To control the ferrite and martensite microstructure in dual-phase steels, the phase transformation from ferrite (α) to austenite (γ) on heating is essential. For a comprehensive understanding of the γ formation in the early stage of the αγ phase transformation, the orientation relationships and the boundaries between α and γ grains were investigated using a 3D electron backscatter diffraction analysis. It was found that, when the orientations of the α and γ grains hold the K–S relationship or the N–W relationship, the orientation of the boundary does not correspond to the exact close-packed planes {011}α or {111}γ, but deviates within the vicinity of these crystal planes based on a variety of misorientations of up to 40 deg. Most of the boundary planes with the K–S relationship are parallel to the crystal planes between {011}α and {111}α of the α grain, and {111}γ and {012}γ of the γ grain. Focusing on the crystallographic feature of the boundary planes in austenite phase, the mechanism of the αγ transformation is discussed.



  1. 1.
    [1] M. Enomoto: Acta metall., 1987, vol. 35, pp. 935–945.CrossRefGoogle Scholar
  2. 2.
    [2] K. R. Kinsman, E. Elchen and H. I. Aaronson: Metall. Trans. 1975, Vol. 6A, pp. 303–317.CrossRefGoogle Scholar
  3. 3.
    [3] G. Miyamoto, H. Usuki, Z.-D. Li, and T. Furuhara: Acta Mater., 2010, vol. 58, pp. 4492–4502.CrossRefGoogle Scholar
  4. 4.
    [4] K. Ameyama, T. Maki, and I. Tamura: J. Jpn. Inst. Met., 1986, vol. 50, pp. 602–611.CrossRefGoogle Scholar
  5. 5.
    [5] Y. Adachi, K. Hakata, and K. Tsuzaki: Mater. Sci. Eng. A, 2005, vol. A412, pp. 252–263.CrossRefGoogle Scholar
  6. 6.
    [6] T. Tomida, N. Imai, K. Miyata, S. Fukushima, M. Yoshida, M. Wakita, M. Etou, T. Sasaki, Y. Haraguchi, and Y. Okada: ISIJ Int., 2008, vol. 48, pp. 1148–1157.CrossRefGoogle Scholar
  7. 7.
    [7] M. G. Hall, H. I. Aaronson, and K. R. Kinsman: Surface Science, 1972, vol. 31, pp. 257–274.CrossRefGoogle Scholar
  8. 8.
    [8] J. M. Rigsbee and H. I. Aaronson: Acta Metall., 1979, vol. 27, pp. 351–363.CrossRefGoogle Scholar
  9. 9.
    [9] J. M. Rigsbee and H. I. Aaronson: Acta Metall., 1979, vol. 27, pp. 365–376.CrossRefGoogle Scholar
  10. 10.
    [10] T. Furuhara and H. I. Aaronson: Acta metal., 1991, vol. 39, pp. 2857–2872.CrossRefGoogle Scholar
  11. 11.
    [11] Q. Liang and W. T. Reynolds, Jr.: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2059–2070.CrossRefGoogle Scholar
  12. 12.
    [12] T. Furuhara and T. Maki: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2327–2335.CrossRefGoogle Scholar
  13. 13.
    [13] K. Hata, K. Fujiwara, K. Kawano, M. Sugiyama, T. Fukuda, and T. Kakeshita: ISIJ Int., 2018, vol. 58, pp. 323–332.CrossRefGoogle Scholar
  14. 14.
    [14] K. Hata, K. Fujiwara, K. Kawano, M. Sugiyama, T. Fukuda, and T. Kakeshita: ISIJ Int., 2018, vol. 58, pp. 742–750.CrossRefGoogle Scholar
  15. 15.
    [15] S. Zaefferer, S. I. Wright, and D. Raabe: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 374–389.CrossRefGoogle Scholar
  16. 16.
    [16] P. N. Konijnenberg, S. Zaefferer, S. –B. Lee, A. D. Rollet, G. S. Rohrer, and D. Raabe: Mat. Sci. Forum, 2011, vols. 702–703, pp. 475–478.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Kengo Hata
    • 1
    Email author
  • Kaori Kawano
    • 2
  • Masaaki Sugiyama
    • 3
  • Tomoyuki Kakeshita
    • 4
  1. 1.Advanced Technology Research LaboratoriesNippon Steel CorporationHyogoJapan
  2. 2.Research & Development LaboratoriesNippon Steel CorporationHyogoJapan
  3. 3.Department of Materials Science and EngineeringOsaka UniversityOsakaJapan
  4. 4.Fukui University of TechnologyFukuiJapan

Personalised recommendations