Advertisement

Microstructure Formation and Tailoring of the Intermetallic TiAl Alloy Produced by Direct Laser Deposition

  • Xinyu Zhang
  • Chuanwei LiEmail author
  • Haozhang Zhong
  • Xudong Yang
  • Jianfeng GuEmail author
Communication
  • 49 Downloads

Abstract

This study investigates the microstructure morphology in a single-track wall of Ti-47Al-2Cr-2Nb alloy produced by direct laser deposition. The as-deposited wall mainly exhibited an alternative-band microstructure containing a dendrite band and α2/γ lamellar band, which is considered to result from the influence of the heat affected zone. A tailoring method was proposed and alternative-band microstructures with various equiaxed colony fractions, and even nearly fully equiaxed colony microstructures, were successfully obtained.

Notes

This work was supported by the National Natural Science Foundation of China (Grant No. 51971145 and No. 51801126) and the National Key Research and Development Program of China (Grant No. SQ2018YFB200007).

References

  1. 1.
    J. Ding, M. Zhang, Y. Liang, Y. Ren, C. Dong, and J. Lin: Acta Mater., 2018, vol. 161, pp. 1–11.CrossRefGoogle Scholar
  2. 2.
    Kothari K, Radhakrishnan R, Wereley NM (2012) Prog Aerosp Sci 55:1–16.CrossRefGoogle Scholar
  3. 3.
    H. Clemens and S. Mayer: Adv. Eng. Mater., 2013, vol. 15, pp. 191–215.CrossRefGoogle Scholar
  4. 4.
    A. N. D. Gasper, S. Catchpole-Smith, and A. T. Clare: J. Mater. Process. Tech., 2017, vol. 239, pp. 230–239.CrossRefGoogle Scholar
  5. 5.
    X. Li, J. Fan, Y. Su, D. Liu, J. Guo and H. Fu: Intermetallics, 2012, vol. 27, pp. 38–45.CrossRefGoogle Scholar
  6. 6.
    J. Fan, C. Zhang, S. Wu, H. Gao, X. Wang, J. Guo and H. Fu: Intermetallics, 2017, vol. 90, pp. 113–118.CrossRefGoogle Scholar
  7. 7.
    Y. Li, L. Zhou, J. Pin, H. Chang, and F. Li: J. Alloys Comp. 2016, vol. 668, pp. 22–26.CrossRefGoogle Scholar
  8. 8.
    M. C. Kim, M. H. Oh, J. H. Lee, H. Inui, M. Yamaguchi and D. M. Weea: Mater. Sci. Eng. A, 1997, vol. 239–240, pp. 570–576.CrossRefGoogle Scholar
  9. 9.
    D. R. Johnson, Y. Masuda, H. Inui and M. Yamaguchi: Mater. Sci. Eng. A, 1997, vol. 239–240, pp. 577–583.CrossRefGoogle Scholar
  10. 10.
    V. Fallah, M. Amoorezaei, N. Provatas, S. F. Corbin and A. Khajepour, Acta Mater., 2012, vol. 60, pp. 1633–1646.CrossRefGoogle Scholar
  11. 11.
    S. M. Thompson, L. Bian, N. Shamsaei and A. Yadollahi: Addit. Manuf. 2015, vol.8, pp. 36–62.CrossRefGoogle Scholar
  12. 12.
    L. E. Murr, S. M. Gaytan, A. Ceylan, E. Martinez, J. L. Martinez, D. H. Hernandez, B. I. Machado, D. A. Ramirez, F. Medina, S. Collins and R. B. Wicker: Acta Mater., 2010, vol. 58, pp. 1887–1894.CrossRefGoogle Scholar
  13. 13.
    Li W, Liu J, Wen S, Wei Q, Yan C, Shi Y (2016) Mater Charact 113:125–133.CrossRefGoogle Scholar
  14. 14.
    W. Li, J. Liu, Y. Zhou, S. Wen, Q. Wei, C. Yan and Y. Shi: Scr. Mater., 2016, vol. 118, pp. 13–18.CrossRefGoogle Scholar
  15. 15.
    M. Thomas, T. Malot and P. Aubry: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3143–3158.CrossRefGoogle Scholar
  16. 16.
    D. Srivastava, I. T. H. Chang and M. H. Loretto: Mater. Des., 2000 vol. 21, pp. 425–433.CrossRefGoogle Scholar
  17. 17.
    D. Srivastava, I. T. H. Chang and M. H. Loretto: Intermetallics 2001, vol. 9, pp. 1003–1013.CrossRefGoogle Scholar
  18. 18.
    H. P. Qu and H. M. Wang: Mater. Sci. Eng. A, 2007, vol. 466, pp. 187–194.CrossRefGoogle Scholar
  19. 19.
    H. P. Qu, P. Li, S. Q. Zhang, A. Li and H. M. Wang: Mater. Des., 2010, vol. 31, pp. 2201–2210.CrossRefGoogle Scholar
  20. 20.
    Appel F, Paul JDH, Oehring M (2011) Gamma Titanium Aluminide Alloys. Wiley, Weinheim, pp 33–40.CrossRefGoogle Scholar
  21. 21.
    O. Hunziker, M. Vandyoussefi and W. Kurz: Acta Mater., 1998, vol. 46, pp. 6325–6336.CrossRefGoogle Scholar
  22. 22.
    D. R. Johnson, H. Inui, S. Muto, Y. Omiya and T. Yamanaka: Acta Mater., 2006, vol. 54, pp. 1077–1085.CrossRefGoogle Scholar
  23. 23.
    J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.CrossRefGoogle Scholar
  24. 24.
    R. D. Liu, J. J. Guo, S. P. Wu, Y. Q. Su and H. Z. Fu: Mater. Sci. Eng. A, 2006, vol. 415, pp. 184–194.CrossRefGoogle Scholar
  25. 25.
    D. R. Johnson, H. Inui and M. Yamaguchi: Intermetallics, 1998, vol. 6, pp. 647–652.CrossRefGoogle Scholar
  26. 26.
    Y. M. Ren, X. Lin, X. Fu, H. Tan, J. Chen and W. D. Huang: Acta Mater., 2017, vol. 132, pp. 82–95.CrossRefGoogle Scholar
  27. 27.
    I. N. Maliutina, H. Si-Mohand, R. Piolet, F. Missemer, A. I. Popelyukh, N. S. Belousova and P. Bertrand: Metall. Mater. Trans. A, 2016, vol. 47, pp. 378–387.CrossRefGoogle Scholar
  28. 28.
    K. Lu, L. Lu and S. Suresh: Science, 2009, vol. 324, pp. 349–52.CrossRefGoogle Scholar
  29. 29.
    S. R. Dey A. Hazotte and E. Bouzy: Intermetallics, 2009, vol. 17, pp. 1052–1064.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Institute of Materials Modification and Modelling, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Materials Genome Initiative CenterShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Shanghai Key Laboratory of Materials Laser Processing and ModificationShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations