Stable Eutectic Formation in Spray-Formed Cast Iron

  • Guilherme ZeponEmail author
  • Julia F. M. Fernandes
  • Lucas B. Otani
  • Claudemiro Bolfarini


Spray forming is an advanced casting process that produces refined and homogenous microstructure directly from the liquid metal regardless of the alloy system. However, the microstructure evolution during spray forming is complex because the process comprises two sequential steps with very different cooling rates, i.e., atomization and deposition. It is well known that the microstructure of cast irons is highly dependent on the chemical composition and the cooling rate imposed to the liquid. In order to better understand the microstructural evolution during solidification by spray forming, this study investigated the solidification of two cast irons with different stable–metastable eutectic temperature interval (ΔTES−M), 30 K and 17 K. The microstructures of both overspray powders presented a dendritic array of austenite with cementite in the inter-dendritic spacing. Despite the high cooling rates imposed to the alloys during the atomization step, the final microstructure was defined by the cooling conditions prevailing during the final step of deposit solidification and stable eutectic was formed. This was ascribed to the dynamic process involving heating and remelting of the low melting temperature phases present in the droplets that arrives completely or partially solid in the deposition zone.



The authors would like to thank the Brazilian research-funding agencies: Fundação de Amparo à Pesquisa do Estado de São Paulo/FAPESP (Grant Nos. 2013/05987-8 and 2016/19326-1), Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil/ CNPq, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, for the financial support. Additionally, the Laboratory of Structure Characterization at the Department of Materials Engineering at the Federal University of São Carlos (LCE/DEMa/UFSCar) for the microscopy facilities.

Supplementary material

11661_2019_5549_MOESM1_ESM.pdf (211 kb)
Supplementary material 1 (PDF 210 kb)


  1. 1.
    A. P. de BribeanGuerra, N. Ellendt, V. Uhlenwinkel, P. S. C. P. da Silva, and C. Bolfarini: Materwiss. Werksttech., 2014, vol. 45, pp. 568–73.CrossRefGoogle Scholar
  2. 2.
    C. Cui, A. Schulz, K. Schimanski, and H.-W. Zoch: J. Mater. Process. Technol., 2009, vol. 209, pp. 5220–28.CrossRefGoogle Scholar
  3. 3.
    L. G. Hou, C. Cui, and J. S. Zhang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6400–6412.CrossRefGoogle Scholar
  4. 4.
    V. C. Srivastava, R. K. Mandal, and S. N. Ojha: J. Mater. Sci. Lett., 2001, vol. 20, pp. 27–29.CrossRefGoogle Scholar
  5. 5.
    P. Shukla, R.K. Mandal, and S.N. Ojha: Mater. Sci. Eng. A, 2001, vol. 304–306, pp. 583–86.CrossRefGoogle Scholar
  6. 6.
    E. M. Mazzer, C. R. M. Afonso, M. Galano, C. S. Kiminami, and C. Bolfarini: J. Alloys Compd., 2013, vol. 579, pp. 169–73.CrossRefGoogle Scholar
  7. 7.
    P.S. Grant, W.T Kim, and B. Cantor: Mater. Sci. Eng. A, 1991, vol. 134, pp. 1111–14.CrossRefGoogle Scholar
  8. 8.
    C. Cui, U. Fritsching, A. Schulz, R. Tinscher, K. Bauckhage, and P. Mayr: J. Mater. Process. Technol., 2005, vol. 168, pp. 496–504.CrossRefGoogle Scholar
  9. 9.
    C. Cui, U. Fritsching, A. Schulz, K. Bauckhage, and P. Mayr: Mater. Sci. Eng. A, 2004, vol. 383, pp. 158–65.CrossRefGoogle Scholar
  10. 10.
    R. A. Mesquita and C. A. Barbosa: Mater. Sci. Eng. A, 2004, vol. 383, pp. 87–95.CrossRefGoogle Scholar
  11. 11.
    G. Zhang, H. Yuan, D. Jiao, Z. Li, Y. Zhang, and Z. Liu: Mater. Sci. Eng. A, 2012, vol. 558, pp. 566–71.CrossRefGoogle Scholar
  12. 12.
    A. Schulz, V. Uhlenwinkel, C. Escher, R. Kohlmann, A. Kulmburg, M. C. Montero, R. Rabitsch, W. Schützenhöfer, D. Stocchi, and D. Viale: Mater. Sci. Eng. A, 2008, vol. 477, pp. 69–79.CrossRefGoogle Scholar
  13. 13.
    A. Schulz, V. Uhlenwinkel, C. Bertrand, R. Kohlmann, A. Kulmburg, A. Oldewurtel, R. Schneider, and D. Viale: Mater. Sci. Eng. A, 2004, vol. 383, pp. 58–68.CrossRefGoogle Scholar
  14. 14.
    J. Mi and P.S. Grant: Acta Mater., 2008, vol. 56, pp. 1588–96.CrossRefGoogle Scholar
  15. 15.
    J. Mi and P.S. Grant: Acta Mater., 2008, vol. 56, pp. 1597–1608.CrossRefGoogle Scholar
  16. 16.
    R. L. Kennedy, R. M. F. Jones, R. M. Davis, M. G. Benz, and W. T. Carter: Vacuum, 1996, vol. 47, pp. 819–24.CrossRefGoogle Scholar
  17. 17.
    A.H. Kasama, A.J. Mourisco, C.S. Kiminami, W.J. Botta, and C. Bolfarini: Mater. Sci. Eng. A, 2004, vol. 375-377, pp. 589–94.CrossRefGoogle Scholar
  18. 18.
    D.N. Hanlon, W.M. Rainforth, and C.M. Sellars: Wear, 1999, vol. 225–229, pp. 587–99.CrossRefGoogle Scholar
  19. 19.
    T.T. Matsuo, C.S. Kiminami, W.J. Botta, and C. Bolfarini: Wear, 2005, vol. 259, pp. 445–52.CrossRefGoogle Scholar
  20. 20.
    M. L T. Guo, C.-H. Chiang, and C. Y.A. Tsao: Mater. Sci. Eng. A, 2002, vol. 326, pp. 1–10.CrossRefGoogle Scholar
  21. 21.
    X. Yi and S. Qin: Adv. Mater. Res., 2011, vol. 337, pp. 434–38.CrossRefGoogle Scholar
  22. 22.
    V.C Srivastava, A. Schneider, V. Uhlenwinkel, S.N Ojha, and K. Bauckhage: J. Mater. Process. Technol., 2004, vol. 147, pp. 174–80.CrossRefGoogle Scholar
  23. 23.
    V.C. Srivastava, E. Huttunen-Saarivirta, C. Cui, V. Uhlenwinkel, A. Schulz, and N.K. Mukhopadhyay: J. Alloys Compd., 2014, vol. 597, pp. 258–68.CrossRefGoogle Scholar
  24. 24.
    G. Zepon, C. S. Kiminami, W. J. Botta, and C. Bolfarini: Mater. Res., 2013, vol. 16, pp. 642–46.CrossRefGoogle Scholar
  25. 25.
    G. Zepon, A.R.C. Nascimento, A.H. Kasama, R.P. Nogueira, C.S. Kiminami, W.J. Botta, and C. Bolfarini: Mater. Des., 2015, vol. 83, pp. 214–23.CrossRefGoogle Scholar
  26. 26.
    P.S. Grant: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1520–29.CrossRefGoogle Scholar
  27. 27.
    P. S. Grant: Prog. Mater. Sci., 1995, vol. 39, pp. 497–545.CrossRefGoogle Scholar
  28. 28.
    M. Krauss, D. Bergmann, U. Fritsching, and K. Bauckhage: Mater. Sci. Eng. A, 2002, vol. 326, pp. 154–64.CrossRefGoogle Scholar
  29. 29.
    G. Zepon, N. Ellendt, V. Uhlenwinkel, and C. Bolfarini: Metall. Mater. Trans. A, 2016, vol. 47, pp. 842–51.CrossRefGoogle Scholar
  30. 30.
    D. M. Stefanescu: Science and Engineering of Casting Solidification, 2nd ed., Springer US, Boston, MA, 2009, 413 pp.Google Scholar
  31. 31.
    D. M. Stefanescu, S. Katz: in ASM Handb. Vol. 15 Casting, ASM International (OH), 2008, pp. 41–55.Google Scholar
  32. 32.
    H. L. Lukas, S. G. Fries, and B. Sundman: Computational Thermodynamics, The Calphad Method, 1st ed., Cambridge University Press, Cambridge, 2007, 324 pp.CrossRefGoogle Scholar
  33. 33.
    O. Oloyede, R. F. Cochrane, and A. M. Mullis: J. Alloys Compd., 2017, vol. 707, pp. 347–50.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Guilherme Zepon
    • 1
    Email author
  • Julia F. M. Fernandes
    • 1
  • Lucas B. Otani
    • 2
  • Claudemiro Bolfarini
    • 1
  1. 1.Department of Materials EngineeringFederal University of São Carlos (UFSCar)São CarlosBrazil
  2. 2.Graduate Program of Materials Science and EngineeringFederal University of São Carlos (UFSCar)São CarlosBrazil

Personalised recommendations