Advertisement

Growth and Properties of TiN/Al2O3/Ti(C, N)/TiN Multilayer CVD Coatings on Ti (C, N)-Based Cermet Substrates with Ni, Co and Fe Binders

  • Junbo Liu
  • Ji XiongEmail author
  • Zhixing Guo
  • Chengtao Qin
  • Ya Xiao
  • Qianbing You
Article
  • 11 Downloads

Abstract

In this article, Ti (C, N)-based cermets with Ni, Co and Fe binder phase were manufactured by traditional powder metallurgical techniques. The multilayer TiN/Al2O3/Ti (C, N)/TiN CVD (chemical vapor deposition) coatings were deposited on the three kind of cermets, and the growth and properties of the coatings were studied. The results show that massive cores-incomplete rims are found in the cermet-Ni (cermets with Ni binder) and cermet-Fe (cermets with Fe binder), while in the cermet-Co (cermets with Co binder), the small black cores are surrounded by a complete and well-developed rim phase. When the TiN coating is deposited on the cermets with cores-incomplete rims, the Ti and N atoms stack on the face-centered cubic structure of Ti (C, N) first, and epitaxial growth of the TiN crystals takes place. The epitaxial growth is attributed to the same preferred orientation (2 0 0) of the TiN layers to the Ti (C, N) of the substrate. While on the cermets with cores-complete rims, (Mo, Ti) (C, N) solid solution and binder phase (Ni/Co/Fe), which has a distinct crystal structure or lattice parameters, TiN grains nucleate first and then grow. In this case, the TiN coatings show a (1 1 1)-oriented structure. Dense and thin coatings grow on the cermets-Co. The adhesion of the multilayer coatings to the substrate increases in the order cermets-Fe, cermets-Ni and cermets-Co. In addition, the coating on the cermets-Co has the lowest COF (coefficient of friction) as the thin TiN layer (0.7 μm) is propitious to diffusion of Al and O, and a protective transfer layer is formed by AlOx.

Notes

Acknowledgments

The study is financially supported by the National Natural Science Foundation of China (Nos. 51634006, 51575368). The authors thank the Chengdu Mingwu Technology Corp., Ltd., of China, Chengdu Tool Research Institute Co., Ltd., of China. We also appreciate Wang Hui from the Analytical & Testing Center of Sichuan University for her help with SEM characterization. Thanks are also extended to the National Engineering Research Center for Biomaterials of Sichuan University for the testing of the samples.

References

  1. 1.
    C. Park, J. Kim, S. Kang, J. Alloys Compd. 2018, vol. 766, pp. 564-571.CrossRefGoogle Scholar
  2. 2.
    H. Chien, M.C. Gao, H.M. Miller, G.S. Rohrer, Z. Ban, P. Prichard, Y. Liu, Int. J. Refract. Met. Hard Mater. 2009, vol. 27, pp. 458–464.CrossRefGoogle Scholar
  3. 3.
    [3]Y.S. Tian, C.Z. Chen, S.T. Li, Q.H. Huo, Appl. Surf. Sci. 2005, vol. 242, pp. 177–184.CrossRefGoogle Scholar
  4. 4.
    [4]D.M. Devia, E.R. Parra, P.J. Arango, Appl. Surf. Sci. 2011, vol. 258, pp. 1164–1174.CrossRefGoogle Scholar
  5. 5.
    X.M. Li, Y. Han, Appl. Surf. Sci. 2008, vol. 254, pp. 6350–6357.CrossRefGoogle Scholar
  6. 6.
    S. Ruppi, Int. J. Refract. Metals Hard Mater. 2005, vol. 23, pp. 306–316.CrossRefGoogle Scholar
  7. 7.
    S. Acharya, M. Debata, T.S. Acharya, P.P. Acharya, S.K. Singh, J. Alloys Compd. 2016, vol. 685, pp. 905-912.CrossRefGoogle Scholar
  8. 8.
    M. Chen, Q. Zhuang, N. Lin, Y.H. He, J. Alloys Compd. 2017, vol. 701, pp. 408-415.CrossRefGoogle Scholar
  9. 9.
    M.K. Lee, J.H. Kim, J. Alloys Compd. 2017, vol. 698, pp. 39-43.CrossRefGoogle Scholar
  10. 10.
    H Yu, Y Liu, Y Jin, J Ye, Int. J.Refract. Met. Hard Mater. 2011, vol. 29, pp. 586-590.CrossRefGoogle Scholar
  11. 11.
    P. Alvaredo, C. Abajo, S.A. Tsipas, E. Gordo, J. Alloys Compd. 2014, vol. 591, pp. 72-79.CrossRefGoogle Scholar
  12. 12.
    J.M. Córdoba, E. Chicardi, F.J. Gotor, J. Alloys Comp. 2013, vol. 559, pp. 34–38.CrossRefGoogle Scholar
  13. 13.
    A. Demoly, W. Lengauer, C. Veitsch, K. Rabitsch, Int. J. Refract. Met. Hard Mater. 2011, vol. 29, pp. 716–723.CrossRefGoogle Scholar
  14. 14.
    Q.Q. Yang, W.H. Xiong, M. Zhang, B. Huang, S. Chen, J. Alloys Comp. 2015, vol. 636, pp. 270–274.CrossRefGoogle Scholar
  15. 15.
    E. Chicardi, Y. Torres, M.J. Sayagues, V. Medri, C. Melandri, J.M. Cordoba, F.J. Gotor, Chem. Eng. J. 2015, vol. 267, pp. 297–305.CrossRefGoogle Scholar
  16. 16.
    M. Naidoo, O. Johnson, I. Sigalas, M. Herrmann, Int. J. Refract. Met. Hard Mater. 2014, vol. 42, pp. 97–102.CrossRefGoogle Scholar
  17. 17.
    S.G. Huang, L. Li, O. Vander-Biest, J. Vleugels, J. Alloys Compd. 2008, vol. 464, pp. 205-211.CrossRefGoogle Scholar
  18. 18.
    Q.Z. Xu, X. Ai, J. Zhao, F. Gong, J.M. Pang, Y.T. Wang, J. Alloy Compd. 2015, vol. 644, pp. 633-672.Google Scholar
  19. 19.
    L.V. Fieandt, M. Fallqvist, T. Larsson, E. Lindahl, M. Boman, Tribol, Int. 2018, vol. 119, pp. 593-599.CrossRefGoogle Scholar
  20. 20.
    L. von Fieandt, K. Johansson, T. Larsson, M. Boman, E. Lindahl, Thin Solid Film 2018, vol. 645, pp. 19-26.CrossRefGoogle Scholar
  21. 21.
    H. Du, J. Xiong, H.B. Zhao, Y.M. Wu, W.C. Wan, L.L. Wang, Appl. Surf. Sci. 2014, vol. 292, pp. 699-694.Google Scholar
  22. 22.
    S. Sveen, J.M. Andersson, R. M. Saoubi, M. Olsson, Wear. 2013, vol. 308, pp. 133–141.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Junbo Liu
    • 1
  • Ji Xiong
    • 1
    Email author
  • Zhixing Guo
    • 1
  • Chengtao Qin
    • 1
  • Ya Xiao
    • 1
  • Qianbing You
    • 1
  1. 1.School of Manufacturing Science and EngineeringSichuan UniversityChengduP.R. China

Personalised recommendations