Effects of Er and Zr Additions on the As-Cast Microstructure and on the Solution-Heat-Treatment Response of Innovative Al-Si-Mg-Based Alloys

  • M. ColomboEmail author
  • R. H. Buzolin
  • E. Gariboldi
  • L. Rovatti
  • R. Vallant
  • C. Sommitsch


The microstructure of Al-Si-Mg alloys strongly depends on their chemical composition and the heat treatment they undergo during production. The influence of solution heat treatment (SHT) and the addition of Er and Zr on the microstructure of gravity-cast A356 (Al-7Si-0.4Mg) were examined. The reference as-cast microstructure is characterized by the grain size and morphology of eutectic Si, as well as the morphology, area fraction, and chemical composition of the intermetallic compounds. The morphology of eutectic Si is unstable during SHT; the evolution mechanisms can be described using thermodynamic and kinetic models and have been validated using optical and scanning electron microscope (SEM) micrographs. The effect of high-temperature exposure during SHT, on the other hand, plays a minor role on the quantity and morphology of the intermetallic compounds, as demonstrated by optical and SEM micrographs.



  1. 1.
    I.J. Polmear: Light Alloys: from Traditional Alloys to Nanocrystals, Butterworth-Heinemann, Oxford, United Kingdom, 2005.Google Scholar
  2. 2.
    K.T. Kashyap, S. Murali, K.S. Raman, and K.S.S. Murthy: Mater. Sci. Technol., 1993, vol. 9, pp. 189–204.CrossRefGoogle Scholar
  3. 3.
    R. Chen, Y. Shio, Y. Xub, and C. Liu: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 1645–52.CrossRefGoogle Scholar
  4. 4.
    K.T. Akhil, S. Arul, and R. Sellamuthu: Proc. Mater. Sci., 2014, vol. 5, pp. 362–68.CrossRefGoogle Scholar
  5. 5.
    Q.G. Wang: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2887–99.CrossRefGoogle Scholar
  6. 6.
    L.Y. Zhang, Y.H. Jiang, Z. Ma, S.F. Shan, Y.Z. Jia, C.Z. Fan, and W.K. Wang: J. Mater. Process. Technol., 2008, vol. 207, pp. 107–11.CrossRefGoogle Scholar
  7. 7.
    M.A. Moustafa: J. Mater. Process. Technol., 2009, vol. 209, pp. 605–10.CrossRefGoogle Scholar
  8. 8.
    C. Do-Lee: Mater. Sci. Eng. A, 2007, vol. 464, pp. 249–54.CrossRefGoogle Scholar
  9. 9.
    C.H. Càceres: Scripta Metall. Mater., 1995, vol. 32, pp. 1851–56.CrossRefGoogle Scholar
  10. 10.
    Q.G. Wang and C.J. Davidson: J. Mater. Sci., 2001, vol. 36, pp. 739–50.CrossRefGoogle Scholar
  11. 11.
    M. Zhu, Z. Jian, G. Yang, and Y. Zhou: Mater. Design, 2012, vol. 36, pp. 243–49.CrossRefGoogle Scholar
  12. 12.
    E. Sjölander and S. Seifeddine: J. Mater. Process. Technol., 2010, vol. 210, pp. 1249–59.CrossRefGoogle Scholar
  13. 13.
    F.H. Samuel: J. Mater. Sci., 1998, vol. 33, pp. 2283–97.CrossRefGoogle Scholar
  14. 14.
    M.A. Moustafa, F.H. Samuel, and H.W. Doty: J. Mater. Sci., 2003, vol. 38, pp. 4507–22.CrossRefGoogle Scholar
  15. 15.
    ASTM Standards (2012) Standard practice for heat treatment of aluminum-alloy castings from all processes. ASTM, Philadelphia.Google Scholar
  16. 16.
    G. Sharma, R.V. Ramanujan, and G.P. Tiwari: Acta Mater., 2000, vol. 48, pp. 875–89.CrossRefGoogle Scholar
  17. 17.
    J.C.M. Kampe, T.H. Courtney, and Y. Leng: Acta Metall., 1989, vol. 37, pp. 1735–45.CrossRefGoogle Scholar
  18. 18.
    T.H. Courtney and J.C.M. Kampe: Acta Metall., 1989, vol. 37, pp. 1747–58.CrossRefGoogle Scholar
  19. 19.
    E. Ogris, A. Wahlen, H. Luechinger, and P.J. Uggowitzer: J. Light Met., 2002, vol. 2, pp. 263–69.CrossRefGoogle Scholar
  20. 20.
    J.A. Taylor, D.H. St John, J. Barresi, and M.J. Couper: Mater. Sci. Forum, 2000, vol. 331, pp. 277–82.Google Scholar
  21. 21.
    P.A. Rometsch, L. Arnberg, and D.L. Zhang: Int. J. Cast Met. Res., 2016, vol. 12, pp. 1–8.CrossRefGoogle Scholar
  22. 22.
    J. Hernandez-Sandoval, G.H. Garza-Elizondo, A.M. Samuel, S. Valtiierra, and F.H. Samuel: Mater. Des., 2014, vol. 58, pp. 89–101.CrossRefGoogle Scholar
  23. 23.
    Y.-C. Tsai, C.-Y. Chou, S.-L. Lee, C.-K. Lin, J.-C. Lin, and S.W. Lim: J. Alloys Compds., 2009, vol. 487, pp. 157–62.CrossRefGoogle Scholar
  24. 24.
    A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, and L. Lu: Mater. Sci. Eng. A, 2005, vols. 413–414, pp. 243–48.CrossRefGoogle Scholar
  25. 25.
    A. Mazahery and M.O. Shabani: J. Mater., 2014, vol. 66, pp. 726–38.Google Scholar
  26. 26.
    J.H. Li, X.D. Wang, T.H. Ludwig, Y. Tsunekawa, L. Arnberg, J.Z. Jiang, and P. Schumacher: Acta Mater., 2015, vol. 84, pp. 153–63.CrossRefGoogle Scholar
  27. 27.
    M. Colombo, E. Gariboldi, and A. Morri: J. Alloys Compds., 2017, vol. 708, pp. 1234–44.CrossRefGoogle Scholar
  28. 28.
    M. Colombo, E. Gariboldi, and A. Morri: Mater. Sci. Eng. A, 2018, vol. 713, pp. 151–60.CrossRefGoogle Scholar
  29. 29.
    L. Ceschini, A. Morri, A. Morri, A. Gamberini, and S. Messieri: Mater. Des., 2009, vol. 30, pp. 4525–41.CrossRefGoogle Scholar
  30. 30.
    Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto: Acta Mater., 2015, vol. 84, pp. 292–304.CrossRefGoogle Scholar
  31. 31.
    P. Schumacher and A.L. Greer: Mater. Sci. Eng. A, 1994, vol. 178, pp. 309–13.CrossRefGoogle Scholar
  32. 32.
    Y. Wang, L. Zhou, and Z. Fan: Light Metals, TMS, Warrendale, PA, 2016, pp. 725–29.Google Scholar
  33. 33.
    Z. Chen, H. Kang, G. Fan, J. Li, Y. Lu, J. Jie, Y. Zhang, T. Li, X. Jian, and T. Wang: Acta Mater., 2016, vol. 120, pp. 168–78.CrossRefGoogle Scholar
  34. 34.
    H. Okamoto: J. Phase Equilibria, 1993, vol. 14, pp. 120–21.CrossRefGoogle Scholar
  35. 35.
    P.S. Mohanty and J.E. Gruzleski: Acta Mater., 1996, vol. 44, pp. 3749–60.CrossRefGoogle Scholar
  36. 36.
    M.V. Karpets, Y.V. Milman, O.M. Barabash, N.P. Korzhova, O.N. Senkov, D.B. Miracle, T.N. Legkaya, and I.V. Voskoboynik: Intermetallics, 2003, vol. 11, pp. 241–49.CrossRefGoogle Scholar
  37. 37.
    S. Nafisi, R. Ghomashchi, and H. Vali: Mater. Charact., 2008, vol. 59, pp. 1466–73.CrossRefGoogle Scholar
  38. 38.
    A.K. Dahle, K. Nogita, J.W. Zindel, S.D. McDonald, and L.M. Hogan: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 949–60.CrossRefGoogle Scholar
  39. 39.
    M.M. Makhlouf and H.V. Guthy: J. Light Met., 2001, vol. 1, pp. 199–218.CrossRefGoogle Scholar
  40. 40.
    J.H. Li, M. Albu, F. Hofer, and P. Schumacher: Acta Mater., 2015, vol. 83, pp. 187–202.CrossRefGoogle Scholar
  41. 41.
    T. Hosch and R.E. Napolitano: Mater. Sci. Eng. A, 2010, vol. 528, pp. 226–32.CrossRefGoogle Scholar
  42. 42.
    H.P. Stuewe and O. Kolednik: Acta Metall., 1988, vol. 36, pp. 1705–08.CrossRefGoogle Scholar
  43. 43.
    H.V. Guthy: Evolution of the Eutectic Microstructure in Chemically Modified and Unmodified Aluminum Silicon Alloys, Worcester Polytechnic Institute, Worcester, MA, 2002.Google Scholar
  44. 44.
    S. Fujikawa, K. Hirano, and Y. Fukushima: Metall. Trans., 1974, vol. 5, pp. 1811–15.CrossRefGoogle Scholar
  45. 45.
    J.L. Murray and A.J. McAlister: Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 74–84.CrossRefGoogle Scholar
  46. 46.
    L.J. Colley, M.A. Wells, and W.J. Poole: Can. Metall. Q., 2014, vol. 53, pp. 125–37.CrossRefGoogle Scholar
  47. 47.
    Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, and D. Zhou: J. Alloys Compds., 2014, vol. 610, pp. 27–34.CrossRefGoogle Scholar
  48. 48.
    S.J. Rothman, N.L. Peterson, L.J. Nowicki, and L.C. Robinson: Phys. Stat. Solidi (b), 1974, vol. 9, pp. 29–33.CrossRefGoogle Scholar
  49. 49.
    H. Okamoto: J. Phase Equilibria Diffus., 2011, vol. 32, pp. 261–62.CrossRefGoogle Scholar
  50. 50.
    H. Okamoto: J. Phase Equilibria, 2002, vol. 23, pp. 455–56.CrossRefGoogle Scholar
  51. 51.
    K. Hirano and S. Fujikawa: J. Nucl. Mater., 1978, vol. 69, pp. 564–66.CrossRefGoogle Scholar
  52. 52.
    S. Fujikawa, K. Hirano, and Y. Fukushima: Metall. Trans. A, 1978, vol. 9A, pp. 1811–15.CrossRefGoogle Scholar
  53. 53.
    S. Mantl, W. Petry, K. Schroeder, and G. Vogl: Phys. Rev. B, 1983, vol. 27, pp. 5313–31.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • M. Colombo
    • 1
    Email author
  • R. H. Buzolin
    • 2
  • E. Gariboldi
    • 1
  • L. Rovatti
    • 1
  • R. Vallant
    • 2
  • C. Sommitsch
    • 2
  1. 1.Dipartimento di MeccanicaPolitecnico di MilanoMilanItaly
  2. 2.Joining and Forming, Institute of Materials ScienceGraz University of TechnologyGrazAustria

Personalised recommendations