Effects of Stress on Martensite Transformation During Continuous Cooling and Mechanical Response of a Medium-Carbon High-Strength Steel

  • Man Liu
  • Guang XuEmail author
  • Guanghui Chen
  • Juan Jia
  • Zhenye Chen
  • Ziliu Xiong


The effects of stress on martensite transformation at different continuous cooling rates and the mechanical response of a medium-carbon high-strength steel were investigated by the metallographic method, dilatometry, and tensile tests. The results show that the microstructure consisted of martensite and retained austenite (RA) regardless of whether stress was applied. The martensite start temperature increased by stress due to additional mechanical driving force. The amount of martensite increased, while the amount of RA decreased at the same cooling rate by applying stress. In addition, the martensite laths were refined and variant selection of martensite orientation was observed by applying stress. Moreover, the tensile strength increased from about 1470 to 2170 MPa by applying stress because of more martensite and the fraction of low-angle grain boundaries. The strength improvement with the increase of cooling rate under stress was larger than that in the specimens without stress.



The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (Grant Nos. 51874216 and 51704217), the Major Projects of Technology Innovation of Hubei Province (Grant No. 2017AAA116), and the Hebei Joint Research Fund for Iron and Steel (Grant No. E2018318013).


  1. 1.
    F. Maresca, V.G. Kouznetsova, M.G.D. Geers, and W.A. Curtin: Acta Mater., 2018, vol. 156, pp. 463–78.CrossRefGoogle Scholar
  2. 2.
    S. Sharma, B.R. Kumar, B.P. Kashyap, and N. Prabhu: Mater. Sci. Eng. A, 2018, vol. 725, pp. 215–27.CrossRefGoogle Scholar
  3. 3.
    J.Y. Tian, G. Xu, Z.Y. Jiang, H.J. Hu, Q. Yuan, and X.L. Wan: Metall. Mater. Int., 2019. Scholar
  4. 4.
    H.S. Yang and H.K.D.H. Bhadeshia: Scripta Mater., 2009, vol. 60, pp. 493–95.CrossRefGoogle Scholar
  5. 5.
    X. Li, L. Chen, Y. Zhao, X. Yuan, and M.R.D. Kumar: Mater. Sci. Eng. A, 2018, vol. 715, pp. 257–65.CrossRefGoogle Scholar
  6. 6.
    J. Huang and Z. Xu: Mater. Sci. Eng. A, 2006, vol. 438, pp. 254–57.CrossRefGoogle Scholar
  7. 7.
    G.S. Ansell, P.J. Brofman, T.J. Nichol, and G. Judd: Int. Conf. on Martensitic Transformations ICOMAT ’79, G.B. Olson and M. Cohen, eds., 1979, pp. 350–55.Google Scholar
  8. 8.
    M. Nikravesh, M. Naderi, and G.H. Akbari: Mater. Sci. Eng. A, 2012, vol. 540, pp. 24–29.CrossRefGoogle Scholar
  9. 9.
    K.W. Andrews: Iron Steel Inst., 1965, vol. 203, pp. 721–27.Google Scholar
  10. 10.
    C. Capdevila, F.G. Caballero, and C. García De Andrés: Mater. Sci. Technol., 2003, vol. 19, pp. 581–86.CrossRefGoogle Scholar
  11. 11.
    D.J.C. Mackay: Neur. Comput., 2014, vol. 4, pp. 448–72.CrossRefGoogle Scholar
  12. 12.
    G. Ghosh and G.B. Olson: Acta Mater., 2002, vol. 50, pp. 2655–75.CrossRefGoogle Scholar
  13. 13.
    J. Wang, P.J.V.D. Wolk, and S.V.D. Zwaag: J. Mater. Sci., 2000, vol. 35, pp. 4393–4404.CrossRefGoogle Scholar
  14. 14.
    G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–1904.Google Scholar
  15. 15.
    S. Chatterjee, H.S. Wang, J.R. Yang, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2006, vol. 22, pp. 641–44.CrossRefGoogle Scholar
  16. 16.
    M. Zhang, Y.H. Wang, C.L. Zheng, F.C. Zhang, and T.S. Wang: Mater. Sci. Eng. A, 2014, vol. 596, pp. 9–14.CrossRefGoogle Scholar
  17. 17.
    M. Maalekian, E. Kozeschnik, S. Chatterjee, and H.K.D.H. Bhadeshia: J. Met. Sci., 2007, vol. 23, pp. 610–12.Google Scholar
  18. 18.
    C. Zhang, D. Cai, Y. Wang, M. Liu, B. Liao, and Y. Fan: Mater. Charact., 2008, vol. 59, pp. 1638–42.CrossRefGoogle Scholar
  19. 19.
    S.H.M. Anijdan, A. Rezaeian, and S. Yue: Mater Charact., 2012, vol. 63, pp. 27–38.CrossRefGoogle Scholar
  20. 20.
    S. Masoud and D.S. Mersagh: J. Manuf. Processes, 2018, vol. 34, pp. 313–28.CrossRefGoogle Scholar
  21. 21.
    M Wang, G Xu, L Wang, YW Xu, ZL Xue (2017) J Wuhan Univ Technol, 32, 186–89.CrossRefGoogle Scholar
  22. 22.
    C.Y. Wang, J. Shi, W.Q. Cao, and H. Dong: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3442–49.CrossRefGoogle Scholar
  23. 23.
    F.R. Xiao, L. Bo, Y.Y. Shan, and K. Yang: Mater Charact., 2005, vol. 54, pp. 417–22.CrossRefGoogle Scholar
  24. 24.
    Y. Yan, G.L. Jiang, T.F. Guo, L.L. Zhang, and S.K. Wei: Heat Treat. Met., 2018, vol. 43, pp. 199–204 (in Chinese).Google Scholar
  25. 25.
    B.B. He, W. Xu, and M.X. Huang: Mater. Sci. Eng. A, 2014, vol. 609, pp. 141–46.CrossRefGoogle Scholar
  26. 26.
    F. Marketz and F.D. Fischer: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 267–78.CrossRefGoogle Scholar
  27. 27.
    E.S. Machlin and M. Cohen: JOM, 1951, vol. 3, pp. 746–54.CrossRefGoogle Scholar
  28. 28.
    S.J. Lee and Y.K. Lee: Scripta Mater., 2009, vol. 60, pp. 1016–19.CrossRefGoogle Scholar
  29. 29.
    S. Kundu, A.K. Verma, and V. Sharma: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2552–65.CrossRefGoogle Scholar
  30. 30.
    S. Kundu and H.K.D.H. Bhadeshia: Scripta Mater., 2007, vol. 57, pp. 869–72.CrossRefGoogle Scholar
  31. 31.
    G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara: J. Alloys Compds., 2013, vol. 577, pp. 528–32.CrossRefGoogle Scholar
  32. 32.
    Z.Y. Tang, J.N. Huang, H. Ding, Z.H. Cai, and R.D.K. Misra: Mater. Sci. Eng. A, 2018, vol. 724, pp. 95–102.CrossRefGoogle Scholar
  33. 33.
    L. Qi, A.G. Khachaturyan, and J.W. Morris: Acta Mater., 2014, vol. 76, pp. 23–39.CrossRefGoogle Scholar
  34. 34.
    B.B. He and M.X. Huang: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 688–94.CrossRefGoogle Scholar
  35. 35.
    M. Sabzil, M. Farzam (2019) Mater Res Expr 6: 1–15.Google Scholar
  36. 36.
    S.H.M. Anijdan and S. Yue: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1140–62.CrossRefGoogle Scholar
  37. 37.
    S.C. Li, C.Y. Guo, L.L. Hao, Y.L. Kang, and Y.G. An: Mater. Sci. Eng. A, 2019, vol. 759, pp. 624–32.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Man Liu
    • 1
  • Guang Xu
    • 1
    Email author
  • Guanghui Chen
    • 1
  • Juan Jia
    • 1
  • Zhenye Chen
    • 2
  • Ziliu Xiong
    • 2
  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanP.R. China
  2. 2.HBIS Group Technology Research InstituteHebei Iron and Steel Group Co., LtdShijiazhuangP.R. China

Personalised recommendations