Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Significant Strengthening Effect on Martensitic Stainless Steel by Repetitive High-Stress Loading at Ultralow Temperature

Abstract

The effect of repetitive high-stress loading (RHSL) at ultralow temperature on the microstructure and mechanical properties of S04 martensitic steel was studied. RHSL significantly increases the yield strength of S04 steel from 1220 to 1650 MPa and raises the tension elastic modulus from 170 to 207.5 GPa with small plastic deformation. This most efficient strengthening mechanism involves the evolution of dislocation patterns and the formation of martensite twins.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

No additional data are available.

References

  1. 1.

    Y.L. Ding, M.Z. Pei, and Y.F. Guo: Met. Phys. Exam. Test., 2010, vol. 28 (6), pp. 9-12.

  2. 2.

    Z.X. Xia, Z.Y. Yang, J. Su, and Y.L. Ding: J. Aeronaut. Mater., 2018, vol. 28 (5), pp. 17-21.

  3. 3.

    Z.H. Zhang, Y.F. Wang, E.K. Zhang, S. Niu, X. Che, G.J. Ma, and L. Zhao: Trans. Metal. Heat Treat., 2014, vol. 39(10), pp. 42-46.

  4. 4.

    W.W. Su, Z.Y. Yang, and Y.L. Ding: Trans. Metal. Heat Treat.,2014, vol. 39 (4), pp. 15-18.

  5. 5.

    Q. Yu, Y.Y. Fan, Z.B. Liu, J.X. Liang, and Z.Y. Yang: Trans. Metal. Heat Treat., 2013, vol. 38 (9), pp. 16-21.

  6. 6.

    H.Z. Li, W.P. Tong, J.J. Cui, H. Zhang, L.Q. Chen, and L. Zuo: Mat. Sci. Eng. A, 2016, vol. 662, pp. 356-362.

  7. 7.

    J. Li, J.Z. Zhou, S.Q. Xu, J. Sheng, S. Huang, Y.H. Sun, Q. Sun, and E.A. Boateng: Mat. Sci. Eng. A, 2017, vol. 707: 612-619.

  8. 8.

    X. Bai, L.B. Zheng, and J.Y. Cu: J. Mater. Eng. Perform., 2017, vol. 26(3), pp. 1-6.

  9. 9.

    Z.Y. Zhao: Mod. Manuf. Technol. Equip., 2016, (6), pp. 114-150

  10. 10.

    A. Portevin and F. Le Chatelier: Comptes Rendus de l’Acade′mie des Sciences (CRAS), 1923, vol. 176, pp. 507-510.

  11. 11.

    P. Fernandez-Zelaia, B.S. Adair, V.M. Barker and S.D. Antolovich: Metall. Mater. Trans. A, 2015, vol.46, pp. 5596-5609

  12. 12.

    J. Das, M. Sankaranarayana and T.K.Nandy: Mater. Sci. Eng. A, 2015, vol. 646, pp. 75-81

  13. 13.

    T.Q. Li, Y.B. Liu, Z.Y. Cao, D.M. Jiang and L.R. Cheng: Mater. Sci. Eng. A, 2010, vol. 527(29-30), pp. 7808-7811.

  14. 14.

    G.G. Yapici, I. Karaman, and Z.P. Luo: Acta Mater., 2006, vol. 54, pp. 3755-3771.

  15. 15.

    N. V. Duamell, I. Ulacia, F. Galvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado, and M.T. Perez-Prado: Acta Mater., 2011, vol. 59 (18), pp. 6949-6962.

  16. 16.

    G.T. Gray: J. Phys. IV, 1997, vol. 7 (3), pp. 423–28.

  17. 17.

    M.Naghizadeh and H. Mirzadeh: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4210-4216.

  18. 18.

    M. Naghizadeh and H. Mirzadeh: Mater. Res. Express, 2018, vol. 5, p. 056529. https://doi.org/10.1088/2053-1591/aac461

  19. 19.

    S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda, and S. Ogata: ISIJ Int., 2010, vol. 50: 875-882.

  20. 20.

    T. Ungar: Mat. Sci. Eng. A, 2011, vol. 309, pp. 14-22.

  21. 21.

    T. Shintani and Y. Murata: Acta Mater., 2011, vol. 59 (11), pp. 4314-4322.

  22. 22.

    V.D. Mote, Y. Purushotham, and B.N. Dole: J. Theor. Appl. Phys., 2012, vol. 6, pp. 1-8.

  23. 23.

    C.E. Kril and R. Birringer: Philo. Mag., 1998, vol. 77 (3), pp. 621-640.

Download references

This work was funded by the National Major Basic Research Project of China (Grant No. 613321).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Correspondence to Hengcheng Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 21, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, H., Xu, H., Tang, J. et al. Significant Strengthening Effect on Martensitic Stainless Steel by Repetitive High-Stress Loading at Ultralow Temperature. Metall and Mat Trans A 51, 76–81 (2020). https://doi.org/10.1007/s11661-019-05535-z

Download citation