Stress Localization Resulting from Grain Boundary Dislocation Interactions in Relaxed and Defective Grain Boundaries

  • Bryan Kuhr
  • Diana FarkasEmail author
  • Ian M. Robertson
  • Drew Johnson
  • Gary Was


Large-scale molecular dynamics simulations are used to study strain and stress localization in atomistic polycrystalline FCC digital samples in a thin-film configuration, deformed in tension. Special focus is placed on the effects of additional grain boundary disorder on the dislocation–grain boundary interaction. The development of the localized stress and strain regions is studied as dislocations are emitted from and arrive at grain boundaries. Digital samples with two different degrees of disorder in the grain boundaries but otherwise identical microstructures are compared in order to understand the effects of additional defects on the stress concentration that develops at the grain boundaries. Localization phenomena are found to depend on the details of the grain boundary defect structure and relaxation state. The results clearly show that the samples with more disordered grain boundaries are more prone to strain and stress localization, with a higher fraction of atoms experiencing extreme deformation. The simulation results are validated by comparison with the predictions of continuum theories and experimental measurements of localized stress performed in austenitic stainless steel.



This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under grant DE-FG02-08ER46525. The authors would like to acknowledge Advanced Research Computing at Virginia Tech for providing computational resources and technical support that have contributed to the results reported within this paper ( The simulations in this paper were run using the LAMMPS software package ( Figures were generated using OVITO (


  1. 1.
    X.M. Bai, L.J. Vernon, R.G. Hoagland, A.F. Voter, M. Nastasi, and B.P. Uberuaga: Phys. Rev. B, 2012, vol. 85, art. no. 214103.CrossRefGoogle Scholar
  2. 2.
    W. S. Yu and S. P. Shen, International Journal of Plasticity, 2016, 85, 93-109.CrossRefGoogle Scholar
  3. 3.
    B. L. Adams, B. S. El-Dasher, R. Merrill, J. Basinger and D. S. Li, Solid Mech Appl, 2004, 114, 315-323.Google Scholar
  4. 4.
    M. Kiritani, N. Yoshida, H. Takata and Y. Maehara, J Phys Soc Jpn, 1975, 38, 1677-1686.CrossRefGoogle Scholar
  5. 5.
    R. S. Averback, J Nucl Mater, 1994, 216, 49-62.CrossRefGoogle Scholar
  6. 6.
    J. S. Robach, I. M. Robertson, B. D. Wirth and A. Arsenlis, Philos. Mag., 2003, 83, 955-967.CrossRefGoogle Scholar
  7. 7.
    Y. Matsukawa, Y. N. Osetsky, R. E. Stoller and S. J. Zinkle, Philos. Mag., 2008, 88, 581-597.CrossRefGoogle Scholar
  8. 8.
    Z. Jiao and G. S. Was, J Nucl Mater, 2008, 382, 203-209.CrossRefGoogle Scholar
  9. 9.
    K. Farrell, T. S. Byun and N. Hashimoto, J Nucl Mater, 2004, 335, 471-486.CrossRefGoogle Scholar
  10. 10.
    Z. Jiao and G. S. Was, J Nucl Mater, 2011, 408, 246-256.CrossRefGoogle Scholar
  11. 11.
    R. P. Tucker, M. S. Wechsler and S. M. Ohr, J Appl Phys, 1969, 40, 400–408.CrossRefGoogle Scholar
  12. 12.
    M. D. McMurtrey, B. Cui, I. Robertson, D. Farkas and G. S. Was, Current Opinion in Solid State & Materials Science, 2015, 19, 305-314.CrossRefGoogle Scholar
  13. 13.
    M. N. Gussev, K. G. Field and J. T. Busby, J Nucl Mater, 2015, 460, 139-152.CrossRefGoogle Scholar
  14. 14.
    T. S. Byun and N. Hashimoto, Am Soc Test Mater, 2008, 1492, 121-133.Google Scholar
  15. 15.
    D. C. Johnson, B. Kuhr, D. Farkas and G. S. Was, Scripta Materialia, 2016, 116, 87-90.CrossRefGoogle Scholar
  16. 16.
    A. N. Stroh, Proc R Soc Lon Ser-A, 1954, 223, 404-414.CrossRefGoogle Scholar
  17. 17.
    J. D. Eshelby, F. C. Frank and F. R. N. Nabarro, Philos. Mag., 1951, 42, 351-364.CrossRefGoogle Scholar
  18. 18.
    J. F. Nye, Acta Metall Mater, 1953, 1, 153-162.CrossRefGoogle Scholar
  19. 19.
    M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Mater. Sci. Eng. A, 2010, 527, 2738-2746.CrossRefGoogle Scholar
  20. 20.
    M. Kamaya, Mater Charact, 2012, 66, 56-67.CrossRefGoogle Scholar
  21. 21.
    Y. Guo, T. B. Britton and A. J. Wilkinson, Acta Mater, 2014, 76, 1-12.CrossRefGoogle Scholar
  22. 22.
    T. B. Britton and A. J. Wilkinson, Acta Mater, 2012, 60, 5773-5782.CrossRefGoogle Scholar
  23. 23.
    Y. Guo, D. M. Collins, E. Tarleton, F. Hofmann, J. Tischler, W. Liu, R. Xu, A. J. Wilkinson and T. B. Britton, Acta Mater, 2015, 96, 229-236.CrossRefGoogle Scholar
  24. 24.
    E. B. Webb, J. A. Zimmerman and S. C. Seel, Math Mech Solids, 2008, 13, 221-266.CrossRefGoogle Scholar
  25. 25.
    A. C. Eringen, Int J Eng Sci, 1977, 15, 177-183.CrossRefGoogle Scholar
  26. 26.
    Z. L. Pan and T. J. Rupert, Acta Mater, 2015, 89, 205-214.CrossRefGoogle Scholar
  27. 27.
    N. J. Burbery, R. Das and W. G. Ferguson, Comput. Mater. Sci., 2015, 101, 16-28.CrossRefGoogle Scholar
  28. 28.
    N. J. Burbery, R. Das and W. G. Ferguson, Acta Mater, 2016, 108, 355-366.CrossRefGoogle Scholar
  29. 29.
    D. Foley and G.J. Tucker: Model. Simul. Mater. Sci., 2016, vol. 24, art. no. 075011.CrossRefGoogle Scholar
  30. 30.
    G. J. Tucker and D. L. McDowell, International Journal of Plasticity, 2011, 27, 841-857.CrossRefGoogle Scholar
  31. 31.
    J. V. Sharp, Philos. Mag., 1967, 16, 77–96.CrossRefGoogle Scholar
  32. 32.
    A. Patra and D. L. McDowell, Acta Mater, 2016, 110, 364-376.CrossRefGoogle Scholar
  33. 33.
    M. D. McMurtrey, G. S. Was, L. Patrick and D. Farkas, Mater. Sci. Eng. A, 2011, 528, 3730-3740.CrossRefGoogle Scholar
  34. 34.
    D. Farkas, Curr. Opin. Solid State Mater., 2013, 17, 284-297.CrossRefGoogle Scholar
  35. 35.
    S. Plimpton, J Comput Phys, 1995, 117, 1-19.CrossRefGoogle Scholar
  36. 36.
    G. Bussi, T. Zykova-Timan, and M. Parrinello, J. Chem. Phys., 2009, vol. 130, art. no. 074101.CrossRefGoogle Scholar
  37. 37.
    M. S. Daw and M. I. Baskes, Phys. Rev. B, 1984, 29, 6443-6453.CrossRefGoogle Scholar
  38. 38.
    A.F. Voter and S.P. Chen, MRS Symp. Proc., 1987, vol. 82, pp. 175–180.CrossRefGoogle Scholar
  39. 39.
    C. L. Kelchner, S. J. Plimpton and J. C. Hamilton, Phys. Rev. B, 1998, 58, 11085-11088.CrossRefGoogle Scholar
  40. 40.
    A. Stukowski: Modell. Simul. Mater. Sci. Eng., 2010, vol. 18, art. no. 085001.CrossRefGoogle Scholar
  41. 41.
    F. Shimizu, S. Ogata and J. Li, Mater Trans, 2007, 48, 2923-2927.CrossRefGoogle Scholar
  42. 42.
    A. J. Wilkinson, G. Meaden and D. J. Dingley, Mater Sci Tech-Lond, 2006, 22, 1271-1278.CrossRefGoogle Scholar
  43. 43.
    H. Van Swygenhoven, M. Spaczer, A. Caro and D. Farkas, Phys. Rev. B, 1999, 60, 22-25.CrossRefGoogle Scholar
  44. 44.
    X. Y. Sun, C. Fressengeas, V. Taupin, P. Cordier and N. Combe, International Journal of Plasticity, 2018, 104, 134-146.CrossRefGoogle Scholar
  45. 45.
    D. L. Olmsted, S. M. Foiles and E. A. Holm, Acta Mater, 2009, 57, 3694-3703.CrossRefGoogle Scholar
  46. 46.
    J. Weertman, Dislocation based fracture mechanics, World Scientific, Singapore; River Edge, N.J., 1996.CrossRefGoogle Scholar
  47. 47.
    M. D. McMurtrey, G. S. Was, B. Cui, I. Robertson, L. Smith and D. Farkas, International Journal of Plasticity, 2014, 56, 219-231.CrossRefGoogle Scholar
  48. 48.
    D. C. Johnson, B. Kuhr, D. Farkas and G. S. Was, Acta Materialia, 2019, 170, 166- 175.CrossRefGoogle Scholar
  49. 49.
    W. A. T. Clark, R. H. Wagoner, Z. Y. Shen, T. C. Lee, I. M. Robertson and H. K. Birnbaum, Scripta Metallurgica Et Materialia, 1992, 26, 203-206.CrossRefGoogle Scholar
  50. 50.
    A. Hasnaoui, P. M. Derlet and H. Van Swygenhoven, Acta Mater, 2004, 52, 2251-2258.CrossRefGoogle Scholar
  51. 51.
    M. P. Dewald and W. A. Curtin, Philos. Mag., 2007, 87, 4615-4641.CrossRefGoogle Scholar
  52. 52.
    J. Kacher, B. P. Eftink, B. Cui and I. M. Robertson, Curr. Opin. Solid State Mater., 2014, 18, 227-243.CrossRefGoogle Scholar
  53. 53.
    Z. L. Pan and T. J. Rupert, Comput. Mater. Sci., 2014, 93, 206-209.CrossRefGoogle Scholar
  54. 54.
    S. Chandra, M. K. Samal, V. M. Chavan and R. J. Patel, Mater. Sci. Eng. A, 2015, 646, 25-32.CrossRefGoogle Scholar
  55. 55.
    W. S. Yu, Z. Q. Wang and S. P. Shen, Comput. Mater. Sci., 2017, 137, 162-170.CrossRefGoogle Scholar
  56. 56.
    K. Kinoshita, T. Shimokawa and T. Kinari, Mater Trans, 2012, 53, 147-155.CrossRefGoogle Scholar
  57. 57.
    T. Shimokawa, T. Hiramoto, T. Kinari and S. Shintaku, Mater Trans, 2009, 50, 2-10.CrossRefGoogle Scholar
  58. 58.
    P. R. M. van Beers, V. G. Kouznetsova and M. G. D. Geers, Mech Mater, 2015, 90, 69-82.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Bryan Kuhr
    • 1
  • Diana Farkas
    • 1
    Email author
  • Ian M. Robertson
    • 2
  • Drew Johnson
    • 3
  • Gary Was
    • 3
  1. 1.Department of Materials Science and EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Department of Materials Science and EngineeringUniversity of WisconsinMadisonUSA
  3. 3.Nuclear Engineering and Radiological Sciences DepartmentUniversity of MichiganAnn ArborUSA

Personalised recommendations