Stress Localization Resulting from Grain Boundary Dislocation Interactions in Relaxed and Defective Grain Boundaries
- 71 Downloads
Abstract
Large-scale molecular dynamics simulations are used to study strain and stress localization in atomistic polycrystalline FCC digital samples in a thin-film configuration, deformed in tension. Special focus is placed on the effects of additional grain boundary disorder on the dislocation–grain boundary interaction. The development of the localized stress and strain regions is studied as dislocations are emitted from and arrive at grain boundaries. Digital samples with two different degrees of disorder in the grain boundaries but otherwise identical microstructures are compared in order to understand the effects of additional defects on the stress concentration that develops at the grain boundaries. Localization phenomena are found to depend on the details of the grain boundary defect structure and relaxation state. The results clearly show that the samples with more disordered grain boundaries are more prone to strain and stress localization, with a higher fraction of atoms experiencing extreme deformation. The simulation results are validated by comparison with the predictions of continuum theories and experimental measurements of localized stress performed in austenitic stainless steel.
Notes
Acknowledgments
This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under grant DE-FG02-08ER46525. The authors would like to acknowledge Advanced Research Computing at Virginia Tech for providing computational resources and technical support that have contributed to the results reported within this paper (www.arc.vt.edu). The simulations in this paper were run using the LAMMPS software package (lammps.sandia.gov). Figures were generated using OVITO (www.ovito.org).
References
- 1.X.M. Bai, L.J. Vernon, R.G. Hoagland, A.F. Voter, M. Nastasi, and B.P. Uberuaga: Phys. Rev. B, 2012, vol. 85, art. no. 214103.CrossRefGoogle Scholar
- 2.W. S. Yu and S. P. Shen, International Journal of Plasticity, 2016, 85, 93-109.CrossRefGoogle Scholar
- 3.B. L. Adams, B. S. El-Dasher, R. Merrill, J. Basinger and D. S. Li, Solid Mech Appl, 2004, 114, 315-323.Google Scholar
- 4.M. Kiritani, N. Yoshida, H. Takata and Y. Maehara, J Phys Soc Jpn, 1975, 38, 1677-1686.CrossRefGoogle Scholar
- 5.R. S. Averback, J Nucl Mater, 1994, 216, 49-62.CrossRefGoogle Scholar
- 6.J. S. Robach, I. M. Robertson, B. D. Wirth and A. Arsenlis, Philos. Mag., 2003, 83, 955-967.CrossRefGoogle Scholar
- 7.Y. Matsukawa, Y. N. Osetsky, R. E. Stoller and S. J. Zinkle, Philos. Mag., 2008, 88, 581-597.CrossRefGoogle Scholar
- 8.Z. Jiao and G. S. Was, J Nucl Mater, 2008, 382, 203-209.CrossRefGoogle Scholar
- 9.K. Farrell, T. S. Byun and N. Hashimoto, J Nucl Mater, 2004, 335, 471-486.CrossRefGoogle Scholar
- 10.Z. Jiao and G. S. Was, J Nucl Mater, 2011, 408, 246-256.CrossRefGoogle Scholar
- 11.R. P. Tucker, M. S. Wechsler and S. M. Ohr, J Appl Phys, 1969, 40, 400–408.CrossRefGoogle Scholar
- 12.M. D. McMurtrey, B. Cui, I. Robertson, D. Farkas and G. S. Was, Current Opinion in Solid State & Materials Science, 2015, 19, 305-314.CrossRefGoogle Scholar
- 13.M. N. Gussev, K. G. Field and J. T. Busby, J Nucl Mater, 2015, 460, 139-152.CrossRefGoogle Scholar
- 14.T. S. Byun and N. Hashimoto, Am Soc Test Mater, 2008, 1492, 121-133.Google Scholar
- 15.D. C. Johnson, B. Kuhr, D. Farkas and G. S. Was, Scripta Materialia, 2016, 116, 87-90.CrossRefGoogle Scholar
- 16.A. N. Stroh, Proc R Soc Lon Ser-A, 1954, 223, 404-414.CrossRefGoogle Scholar
- 17.J. D. Eshelby, F. C. Frank and F. R. N. Nabarro, Philos. Mag., 1951, 42, 351-364.CrossRefGoogle Scholar
- 18.J. F. Nye, Acta Metall Mater, 1953, 1, 153-162.CrossRefGoogle Scholar
- 19.M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Mater. Sci. Eng. A, 2010, 527, 2738-2746.CrossRefGoogle Scholar
- 20.M. Kamaya, Mater Charact, 2012, 66, 56-67.CrossRefGoogle Scholar
- 21.Y. Guo, T. B. Britton and A. J. Wilkinson, Acta Mater, 2014, 76, 1-12.CrossRefGoogle Scholar
- 22.T. B. Britton and A. J. Wilkinson, Acta Mater, 2012, 60, 5773-5782.CrossRefGoogle Scholar
- 23.Y. Guo, D. M. Collins, E. Tarleton, F. Hofmann, J. Tischler, W. Liu, R. Xu, A. J. Wilkinson and T. B. Britton, Acta Mater, 2015, 96, 229-236.CrossRefGoogle Scholar
- 24.E. B. Webb, J. A. Zimmerman and S. C. Seel, Math Mech Solids, 2008, 13, 221-266.CrossRefGoogle Scholar
- 25.A. C. Eringen, Int J Eng Sci, 1977, 15, 177-183.CrossRefGoogle Scholar
- 26.Z. L. Pan and T. J. Rupert, Acta Mater, 2015, 89, 205-214.CrossRefGoogle Scholar
- 27.N. J. Burbery, R. Das and W. G. Ferguson, Comput. Mater. Sci., 2015, 101, 16-28.CrossRefGoogle Scholar
- 28.N. J. Burbery, R. Das and W. G. Ferguson, Acta Mater, 2016, 108, 355-366.CrossRefGoogle Scholar
- 29.D. Foley and G.J. Tucker: Model. Simul. Mater. Sci., 2016, vol. 24, art. no. 075011.CrossRefGoogle Scholar
- 30.G. J. Tucker and D. L. McDowell, International Journal of Plasticity, 2011, 27, 841-857.CrossRefGoogle Scholar
- 31.J. V. Sharp, Philos. Mag., 1967, 16, 77–96.CrossRefGoogle Scholar
- 32.A. Patra and D. L. McDowell, Acta Mater, 2016, 110, 364-376.CrossRefGoogle Scholar
- 33.M. D. McMurtrey, G. S. Was, L. Patrick and D. Farkas, Mater. Sci. Eng. A, 2011, 528, 3730-3740.CrossRefGoogle Scholar
- 34.D. Farkas, Curr. Opin. Solid State Mater., 2013, 17, 284-297.CrossRefGoogle Scholar
- 35.S. Plimpton, J Comput Phys, 1995, 117, 1-19.CrossRefGoogle Scholar
- 36.G. Bussi, T. Zykova-Timan, and M. Parrinello, J. Chem. Phys., 2009, vol. 130, art. no. 074101.CrossRefGoogle Scholar
- 37.M. S. Daw and M. I. Baskes, Phys. Rev. B, 1984, 29, 6443-6453.CrossRefGoogle Scholar
- 38.A.F. Voter and S.P. Chen, MRS Symp. Proc., 1987, vol. 82, pp. 175–180.CrossRefGoogle Scholar
- 39.C. L. Kelchner, S. J. Plimpton and J. C. Hamilton, Phys. Rev. B, 1998, 58, 11085-11088.CrossRefGoogle Scholar
- 40.A. Stukowski: Modell. Simul. Mater. Sci. Eng., 2010, vol. 18, art. no. 085001.CrossRefGoogle Scholar
- 41.F. Shimizu, S. Ogata and J. Li, Mater Trans, 2007, 48, 2923-2927.CrossRefGoogle Scholar
- 42.A. J. Wilkinson, G. Meaden and D. J. Dingley, Mater Sci Tech-Lond, 2006, 22, 1271-1278.CrossRefGoogle Scholar
- 43.H. Van Swygenhoven, M. Spaczer, A. Caro and D. Farkas, Phys. Rev. B, 1999, 60, 22-25.CrossRefGoogle Scholar
- 44.X. Y. Sun, C. Fressengeas, V. Taupin, P. Cordier and N. Combe, International Journal of Plasticity, 2018, 104, 134-146.CrossRefGoogle Scholar
- 45.D. L. Olmsted, S. M. Foiles and E. A. Holm, Acta Mater, 2009, 57, 3694-3703.CrossRefGoogle Scholar
- 46.J. Weertman, Dislocation based fracture mechanics, World Scientific, Singapore; River Edge, N.J., 1996.CrossRefGoogle Scholar
- 47.M. D. McMurtrey, G. S. Was, B. Cui, I. Robertson, L. Smith and D. Farkas, International Journal of Plasticity, 2014, 56, 219-231.CrossRefGoogle Scholar
- 48.D. C. Johnson, B. Kuhr, D. Farkas and G. S. Was, Acta Materialia, 2019, 170, 166- 175.CrossRefGoogle Scholar
- 49.W. A. T. Clark, R. H. Wagoner, Z. Y. Shen, T. C. Lee, I. M. Robertson and H. K. Birnbaum, Scripta Metallurgica Et Materialia, 1992, 26, 203-206.CrossRefGoogle Scholar
- 50.A. Hasnaoui, P. M. Derlet and H. Van Swygenhoven, Acta Mater, 2004, 52, 2251-2258.CrossRefGoogle Scholar
- 51.M. P. Dewald and W. A. Curtin, Philos. Mag., 2007, 87, 4615-4641.CrossRefGoogle Scholar
- 52.J. Kacher, B. P. Eftink, B. Cui and I. M. Robertson, Curr. Opin. Solid State Mater., 2014, 18, 227-243.CrossRefGoogle Scholar
- 53.Z. L. Pan and T. J. Rupert, Comput. Mater. Sci., 2014, 93, 206-209.CrossRefGoogle Scholar
- 54.S. Chandra, M. K. Samal, V. M. Chavan and R. J. Patel, Mater. Sci. Eng. A, 2015, 646, 25-32.CrossRefGoogle Scholar
- 55.W. S. Yu, Z. Q. Wang and S. P. Shen, Comput. Mater. Sci., 2017, 137, 162-170.CrossRefGoogle Scholar
- 56.K. Kinoshita, T. Shimokawa and T. Kinari, Mater Trans, 2012, 53, 147-155.CrossRefGoogle Scholar
- 57.T. Shimokawa, T. Hiramoto, T. Kinari and S. Shintaku, Mater Trans, 2009, 50, 2-10.CrossRefGoogle Scholar
- 58.P. R. M. van Beers, V. G. Kouznetsova and M. G. D. Geers, Mech Mater, 2015, 90, 69-82.CrossRefGoogle Scholar