Advertisement

Quantification of Solute Topology in Atom Probe Tomography Data: Application to the Microstructure of a Proton-Irradiated Alloy 625

  • Iman Ghamarian
  • Li-Jen Yu
  • Emmanuelle A. MarquisEmail author
Topical Collection: 3D Materials Science
  • 54 Downloads
Part of the following topical collections:
  1. 3D Materials Science

Abstract

The analysis of solute clustering in atom probe tomography (APT) has almost exclusively relied on a simple algorithm based on the simple friend-of-friend analysis where a threshold distance or maximum separation defines whether atoms are part of a cluster or part of the matrix. This method is however limited to very specific microstructures and is very sensitive to parameter selection. To expand the range and applicability of current APT analysis tools, we introduce new quantitative data analysis methods based on density-based hierarchical clustering algorithms and relevant to solute clustering and segregation. We demonstrate the methods’ performance on the complex microstructure developing in a proton-irradiated Alloy 625, specifically focusing on the analyses of nanoscale Al clusters, Si clusters, and Si-decorated dislocation loops.

Notes

Acknowledgments

The authors acknowledge technical support and funding from the Air Force Office of Scientific Research under Award FA9550-14-1-0249, the DOE Office of Nuclear Energy’s Nuclear Energy University Program; the technical staff at the University of Michigan Center for Materials Characterization and Michigan Ion Beam Laboratory. The authors would also like to thank Dr. Gracie Burke (University of Manchester) and Dr. Julie Tucker (Oregon State University) for providing the alloy used in this work.

References

  1. 1.
    Gault B, Moody MP, Cairney JM, Ringer SP (2012) Atom Probe Microscopy. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    C.A. Williams, J.M. Hyde, G.D.W. Smith, E.A. Marquis, Journal of Nuclear Materials, 2011, vol 412, pp.100-105.CrossRefGoogle Scholar
  3. 3.
    M.P. Moody, B. Gault, L.T. Stephenson, D. Haley, S.P. Ringer, Ultramicroscopy, 2009, vol. 109, pp. 815-824.CrossRefGoogle Scholar
  4. 4.
    C. Oberdorfer, T. Withrow, L.J. Yu, K. Fisher, E.A. Marquis, W. Windl, Materials Characterization, 2018, vol. 146, pp.324-335.CrossRefGoogle Scholar
  5. 5.
    E.A. Marquis, F. Vurpillot, Microscopy and microanalysis, 2008, vol. 14, pp. 561-570.CrossRefGoogle Scholar
  6. 6.
    F. Vurpillot, A. Bostel, D. Blavette, Applied Physics Letters, 2000, vol. 76, pp. 3127-3129.CrossRefGoogle Scholar
  7. 7.
    J.M. Hyde, C.A. English: in R.G.E. Lucas, L. Snead, M.A.J. Kirk, R.G. Elliman eds., MRS 2000 Fall Meeting Symp., Boston, MA, 2001, pp. 27–29.Google Scholar
  8. 8.
    L.T. Stephenson, M.P. Moody, P.V. Liddicoat, S.P. Ringer, Microscopy and Microanalysis, 2007, vol. 13, pp. 448-63.CrossRefGoogle Scholar
  9. 9.
    D. Vaumousse, A. Cerezo, P.J. Warren, Ultramicroscopy, 2003, vol. 95, pp. 215-21.CrossRefGoogle Scholar
  10. 10.
    Y. Dong, A. Etienne, A. Frolov, S. Fedotova, K. Fujii, K. Fukuya, C. Hatzoglou, E. Kuleshova, K. Lindgren, A. London, A. Lopez, S. Lozano-Perez, Y. Miyahara, Y. Nagai, K. Nishida, B. Radiguet, D.K. Schreiber, N. Soneda, M. Thuvander, T. Toyama, J. Wang, F. Sefta, P. Chou, E.A. Marquis, Microscopy and Microanalysis, 2019, vol. 25, pp. 356-366.CrossRefGoogle Scholar
  11. 11.
    J. Zelenty, A. Dahl, J. Hyde, G.D. Smith, M.P. Moody, Microscopy and Microanalysis, 2017, vol. 23, pp. 269-278.CrossRefGoogle Scholar
  12. 12.
    I. Ghamarian, E.A. Marquis, Ultramicroscopy, 2019, 200, pp. 28-38.CrossRefGoogle Scholar
  13. 13.
    McInnes L, Healy J, Astels S (2017) J. Open Source Softw 2:205CrossRefGoogle Scholar
  14. 14.
    L. McInnes, J. Healy, arXiv preprint, 2017, arXiv:1705.07321.
  15. 15.
    B.P. Kent, A. Rinaldo, T. Verstynen, arXiv preprint, 2013, arXiv:1307.8136.
  16. 16.
    F. Liu, R. Kirchheim, Scripta Materialia, 2004, vol. 51, pp. 521-525.CrossRefGoogle Scholar
  17. 17.
    D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.P. Choi, Current Opinion in Solid State and Materials Science, 2014, vol. 18, pp. 253-261.CrossRefGoogle Scholar
  18. 18.
    O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, D.N. Seidman, Microscopy and Microanalysis, 2000, vol. 6, pp. 437-444.CrossRefGoogle Scholar
  19. 19.
    P. Felfer, B. Scherrer, J. Demeulemeester, W. Vandervorst, J.M. Cairney, Ultramicroscopy, 2015, vol. 159, pp. 438-444.CrossRefGoogle Scholar
  20. 20.
    P.J. Felfer, B. Gault, G. Sha, L. Stephenson, S.P. Ringer, J.M. Cairney, Microscopy and Microanalysis, 2012, vol. 18, pp. 359-364.CrossRefGoogle Scholar
  21. 21.
    H. Aboulfadl, J. Deges, P. Choi, D. Raabe, Acta Materialia, 2015, vol. 86, pp. 34-42.CrossRefGoogle Scholar
  22. 22.
    K. Thompson, P.L. Flaitz, P. Ronsheim, D.J. Larson, T.F. Kelly, Science, 2007, vol. 317, pp. 1370–74.CrossRefGoogle Scholar
  23. 23.
    D. Blavette, E. Cadel, A. Fraczkiewicz, A. Menand, Science, 1999, vol. 286, pp. 2317–19.CrossRefGoogle Scholar
  24. 24.
    J. Wilde, A. Cerezo, G.D.W. Smith, Scripta Materialia, 2000, vol. 43, pp. 39-48.CrossRefGoogle Scholar
  25. 25.
    P. Felfer, A. Ceguerra, S. Ringer, J. Cairney, Ultramicroscopy, 2013, vol. 132, pp. 100-106.CrossRefGoogle Scholar
  26. 26.
    E.A. Marquis, 2019, https://github.com/emarq.
  27. 27.
    R.R. Curtin: Int. Conf. Similarity Search Appl., Springer, 2015, pp. 77–89.Google Scholar
  28. 28.
    R.R. Curtin, W.B. March, P. Ram, D.V. Anderson, A.G. Gray, C.L. Isbell Jr, arXiv preprint, 2013, arXiv:1304.4327.
  29. 29.
    W.B. March, P. Ram, A.G. Gray, Proc. 16th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., ACM, 2010, pp. 603–12.Google Scholar
  30. 30.
    R. Sibson, The computer journal, 1973, vol. 16, pp. 30-34.CrossRefGoogle Scholar
  31. 31.
    J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, Z. Su, Shape Modeling International (SMI 2010), IEEE, vol. 2010, pp. 187-197.CrossRefGoogle Scholar
  32. 32.
    B. Gault, F. Danoix, K. Hoummada, D. Mangelinck, H. Leitner, Ultramicroscopy, 2012, vol. 113, pp. 182-191.CrossRefGoogle Scholar
  33. 33.
    R.C. Prim, The Bell System Technical Journal, 1957, vol. 36, pp. 1389-1401.CrossRefGoogle Scholar
  34. 34.
    Y. Boykov, V. Kolmogorov, IEEE Transactions on Pattern Analysis & Machine Intelligence pp. 1124–37.Google Scholar
  35. 35.
    Li-Jen Yu, E.A. Marquis, J. Nucl. Mater. (to be submitted).Google Scholar
  36. 36.
    A. Barbu, A. Ardell, Scripta Metallurgica, 1975, vol. 9, pp. 1233-1237.CrossRefGoogle Scholar
  37. 37.
    V. Kuksenko, C. Pareige, P. Pareige, Journal of Nuclear Materials, 2013, vol. 432, pp. 160-165.CrossRefGoogle Scholar
  38. 38.
    Bachhav M, RobertOdette G, Marquis EA (2014) Scripta Materialia 74:48–51CrossRefGoogle Scholar
  39. 39.
    R. Bajaj, W. Mills, M. Lebo, B. Hyatt, M. Burke, Westinghouse Electric Corp., West Mifflin, PA (United States), 1995.Google Scholar
  40. 40.
    P. Grobner, Metallurgical Transactions, 1973, vol. 4, pp. 251-260.CrossRefGoogle Scholar
  41. 41.
    G.A. Young, J.D. Tucker, D.R. Eno, Proc. 16th Ann. Conf. Environ. Assist. Crack. Mater. Nucl. Power Syst.-Water React., 2013, pp. 1–22.Google Scholar
  42. 42.
    G.R. Odette, T. Yamamoto, D. Klingensmith, Philosophical Magazine, 2005, vol. 85, pp. 779-797.CrossRefGoogle Scholar
  43. 43.
    E. Meslin, B. Radiguet, M. Loyer-Prost, Acta Materialia, 2013, vol. 61, pp. 6246-6254.CrossRefGoogle Scholar
  44. 44.
    P.D. Styman, J.M. Hyde, K. Wilford, G.D.W. Smith, Ultramicroscopy, 2013, vol. 132, pp. 258-264.CrossRefGoogle Scholar
  45. 45.
    T. Diaz de la Rubia, M.W. Guinan, Physical Review Letters, 1991, vol. 66, pp. 2766-2769.CrossRefGoogle Scholar
  46. 46.
    R. Madec, B. Devincre, L.P. Kubin, Physical Review Letters, 2002, vol. 89, 255508.CrossRefGoogle Scholar
  47. 47.
    S. Queyreau, G. Monnet, B. Devincre, Acta Materialia, 2010, vol. 58, pp. 5586-5595.CrossRefGoogle Scholar
  48. 48.
    R. Madec, B. Devincre, L. Kubin, T. Hoc, D. Rodney, Science, 2003, vol. 301, pp. 1879–82.CrossRefGoogle Scholar
  49. 49.
    B. Devincre, T. Hoc, L. Kubin, Science, 2008, vol. 320, pp. 1745–49.CrossRefGoogle Scholar
  50. 50.
    Li W, Field KG, Morgan D (2018) Computational Materials 4:36CrossRefGoogle Scholar
  51. 51.
    Jenkins ML, Kirk MA (2000) Characterisation of Radiation Damage by Transmission Electron Microscopy. CRC Press, Boca RatonCrossRefGoogle Scholar
  52. 52.
    A. Bhattacharya, E. Meslin, J. Henry, C. Pareige, B. Décamps, C. Genevois, D. Brimbal, A. Barbu, Acta Materialia, 2014, vol. 78, pp. 394-403.CrossRefGoogle Scholar
  53. 53.
    M.L. Jenkins, Z. Yao, M. Hernández-Mayoral, M.A. Kirk, Journal of Nuclear Materials, 2009, vol. 389, pp. 197-202.CrossRefGoogle Scholar
  54. 54.
    C.A. Williams, J.M. Hyde, G.D. Smith, E.A. Marquis, Journal of Nuclear Materials, 2011, vol. 412, pp. 100-105.CrossRefGoogle Scholar
  55. 55.
    A. Etienne, B. Radiguet, N.J. Cunningham, G.R. Odette, R. Valiev, P. Pareige, Ultramicroscopy, 2011, vol. 111, pp. 659-663.CrossRefGoogle Scholar
  56. 56.
    M.K. Miller, Microscopy Research and Technique, 2006, vol. 69, pp. 359-365.CrossRefGoogle Scholar
  57. 57.
    Y. Chen, P.H. Chou, E.A. Marquis, Journal of Nuclear Materials, 2014, vol. 451, pp. 130-136.CrossRefGoogle Scholar
  58. 58.
    D.J. Edwards, E.P. Simonen, S.M. Bruemmer, Journal of nuclear materials, 2003, vol. 317, pp. 13-31CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Iman Ghamarian
    • 1
  • Li-Jen Yu
    • 1
  • Emmanuelle A. Marquis
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations