Evolution of Bimodal Microstructure and High-Temperature Wear Resistance of Al-Cu-Ni Alloys

  • Shubhadeep Maity
  • Dipak Kr. Chanda
  • Parthiban Ramasamy
  • Bijay Kumar Show
  • Jürgen Eckert
  • Supriya BeraEmail author


We report excellent high-temperature (300 °C) wear resistance of copper mold-cast Al80Cu15Ni5 and Al75Cu15Ni10 alloys. The evolution of a novel bimodal microstructure consisting of α-Al, eutectic α-Al + Al2Cu, and a vacancy ordered phase (Al3Ni2 type) restricts severe adhesive and abrasive wear at high temperature. Particularly, the Al75Cu15Ni10 alloy shows a low wear rate at 300 °C. In-depth microstructural characterization of the as-cast alloys and the worn samples elucidate the wear mechanism.


The authors are grateful to Dr. Sandip Bysakh, Senior Scientist, CGCRI KOLKATA for his technical support through TEM characterization. Useful technical discussions with Prof. N. K. Mukhopadhyay and Prof. Indranil Manna are gratefully acknowledged. P.R. and J.E. gratefully acknowledge support through the European Research Council under the ERC Advanced Grant INTELHYB (Grant ERC-2013-ADG-340025).


  1. 1.
    G.E. Totten and D.S. Mackenzie, Handbook of Aluminum: Alloy Production and Materials Manufacturing. 2nd ed. CRC Press, Boca Raton, FL, 2003.CrossRefGoogle Scholar
  2. 2.
    J.R. Davis, Aluminum and Aluminum Alloys, 3rd ed., ASM International, Materials Park, OH, 1993.Google Scholar
  3. 3.
    C.S. Tiwary, S. Kashyap, and K. Chattopadhyay: Scripta Mater., 2014, vol. 93, pp. 20-23.CrossRefGoogle Scholar
  4. 4.
    C. Mondal, A.K. Mukhopadhyay, T. Raghu, and V.K. Varma: Mater. Sci. Eng. A,2007, vol. 454-455, pp. 673-78.CrossRefGoogle Scholar
  5. 5.
    C. Mondal, A.K. Singh, A.K. Mukhopadhyay, and K. Chattopadhyay: Mater. Sci. Eng. A, 2013, vol. 577, pp. 87-100.CrossRefGoogle Scholar
  6. 6.
    P. Nandi, S. Suwas, S. Kumar, and K. Chattopadhyay: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2591-2603.CrossRefGoogle Scholar
  7. 7.
    C.T. Liu and J.O. Stiegler: Science, 1984, vol. 226, pp. 636-42.CrossRefGoogle Scholar
  8. 8.
    C.S. Tiwary, S. Kashyap, D.H. Kim, and K. Chattopadhyay: Mater. Sci. Eng. A, 2015, vol. 639, pp. 359-69.CrossRefGoogle Scholar
  9. 9.
    J.D. Cotton and M.J. Kaufman: Metall. Trans. A, 1991, vol. 22, pp. 927-34.CrossRefGoogle Scholar
  10. 10.
    P. Pandey, S. Kashyap, C.S. Tiwary, and K. Chattopadhyay: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5940-50.CrossRefGoogle Scholar
  11. 11.
    B. Cantor, G.J. May, and G.A. Chadwick: J. Mater. Sci., 1973, vol. 8, pp. 830-38.CrossRefGoogle Scholar
  12. 12.
    B. Cantor and G.A. Chadwick: J. Mater. Sci., 1975, vol. 10, pp. 578-88.CrossRefGoogle Scholar
  13. 13.
    J.M. Park, N. Mattern, U. Kühn, J. Eckert, K.B. Kim, W.T. Kim, K. Chattopadhyay, and D.H. Kim: J. Mater. Res., 2009, vol. 24, pp. 2605-09.CrossRefGoogle Scholar
  14. 14.
    E. Ma: Nat. Mater., 2003, vol. 2, pp. 7-8.CrossRefGoogle Scholar
  15. 15.
    S. Kashyap, C.S. Tiwary, and K. Chattopadhyay: Intermetallics, 2011, vol. 19, pp. 1943-52.CrossRefGoogle Scholar
  16. 16.
    S. Kashyap, C.S. Tiwary, and K. Chattopadhyay: Mater. Sci. Eng. A, 2013, vol.559, pp. 74-85.CrossRefGoogle Scholar
  17. 17.
    S.W. Lee, J.T. Kim, S.H. Hong,H.J. Park, J.Y. Park, N.S. Lee, Y.Seo, J.Y. Suh, J. Eckert, D.H. Kim, J.M. Park, and K.B. Kim: Sci. Rep., 2014, 4, 6500CrossRefGoogle Scholar
  18. 18.
    S. Maity, S. Chakraborty, B. K. Show, and S. Bera: J. Alloys Comp., 2018, vol. 769, pp. 940-50.CrossRefGoogle Scholar
  19. 19.
    T.P. Yadav, N.K. Mukhopadhyay, R.S. Tiwary, and O.N. Srivastava: Phil. Mag. Lett., 2007, 87, 781-89.CrossRefGoogle Scholar
  20. 20.
    A. Subramaniam and S. Ranganathan: J. Non-Cryst. Solids, 2004, vol. 334-335, pp. 114-16.CrossRefGoogle Scholar
  21. 21.
    M.V. Sande, D.E. Ridder, J.V. Landuyt, and S. Amelinckx: Phys. Stat. Sol. (a), 1978, vol. 60, pp. 587-99.CrossRefGoogle Scholar
  22. 22.
    C.H. Wang, S.W. Chen, C.H. Chang, and J.C. Wu: Metall. Mater. Trans. A, 2003, vol. 34, pp. 199-209.CrossRefGoogle Scholar
  23. 23.
    J. Kundin, E. Pogorelov, and H. Emmerich: Acta Mater., 2015, vol. 83, pp. 448-59.CrossRefGoogle Scholar
  24. 24.
    S. Maity, D.K. Chanda, P. Ramasamy, B.K. Show, J. Eckert, and S. Bera: Phil. Mag. Lett., 2018, vol. 98, pp. 486-93.CrossRefGoogle Scholar
  25. 25.
    A.V. Rodrigues, T.S. Lima, T.A. Vida, C. Brito, A. Garcia, and N. Cheung: Met. Mater. Int., 2018, vol. 24, pp. 1058-76.CrossRefGoogle Scholar
  26. 26.
    D.A. Rigney, M.G.S. Naylor, R. Divakar, and L.K. Ives: Mater. Sci. Eng., 1986, vol. 81, pp. 409-25.CrossRefGoogle Scholar
  27. 27.
    M.A. Moore and R.M. Douthwaite: Metall. Trans. A, 1976, vol. 7, pp. 1833-39.CrossRefGoogle Scholar
  28. 28.
    C.S. Tiwary, J. Prakash, S. Chakraborty, D.R. Mahapatra, and K. Chattopadhyay: Philos. Mag., 2018, vol. 98, pp. 2680-2700.CrossRefGoogle Scholar
  29. 29.
    S.M. Kuo and D.A. Rigney: Mater. Sci. Eng. A, 1992, vol. 157, pp. 131-43.CrossRefGoogle Scholar
  30. 30.
    S.L. Rice, H. Nowotny, and S.F. Wayne: Wear, 1981, vol. 74, pp. 131-42.CrossRefGoogle Scholar
  31. 31.
    A. Rosenfield: Wear, 1987, vol. 116, pp. 319-28.CrossRefGoogle Scholar
  32. 32.
    G.M. Hamilton and L.E. Goodman: J. Appl. Mech., 1966, vol. 33, pp. 371-76.CrossRefGoogle Scholar
  33. 33.
    S. Kitahara and A. Hasui: J. Vac. Sci. Technol., 1974, vol. 11, pp. 747-53.CrossRefGoogle Scholar
  34. 34.
    V.V. Sobolev, J.M. Guilemany, J. Nutting, and J.R. Miquel: Int. Mater. Rev., 1997, vol. 42, pp. 117-36.CrossRefGoogle Scholar
  35. 35.
    J. Kundin, H.-L. Chen, R. Siquieri, and H. Emmerich: Eur. Phys. J. Plus, 2011, vol. 126, pp. 96-113.CrossRefGoogle Scholar
  36. 36.
    D. Tourret and C.-A. Gandin: Acta Mater., 2009, vol. 57, pp. 2066-79.CrossRefGoogle Scholar
  37. 37.
    D.H.S. John and L.M. Hogan: Acta Metall., 1987, vol.35, pp. 171-74.CrossRefGoogle Scholar
  38. 38.
    R.M. Srivastava, J. Eckert, W. Löser, B.K. Dhindaw, and L. Schultz: Mater. Trans., 2002, vol. 43, pp. 1670-75.CrossRefGoogle Scholar
  39. 39.
    W. Kurz and D.J. Fisher: Int. Mater. Rev., 1979, vol. 24, pp. 177-204.CrossRefGoogle Scholar
  40. 40.
    K. Kapoor, D. Lahiri, S. Batra, V.R. Rao, and T. Sanyal: Mater. Charact., 2005, vol. 54, pp. 131-40.CrossRefGoogle Scholar
  41. 41.
    S. Maity, A. Sinha, and S. Bera: Nano-Struct. Nano-Objects, 2018, vol. 16, pp. 63-68.CrossRefGoogle Scholar
  42. 42.
    J.J. Wert, S.A. Singerman, and S.G. Caldwell: Wear, 1983, vol.92, pp. 213-29.CrossRefGoogle Scholar
  43. 43.
    D.A. Rigney and W.A. Glaeser: Wear, 1978, vol.46, pp. 241-50.CrossRefGoogle Scholar
  44. 44.
    G.E. Dieter, Mechanical Metallurgy. 3rd ed., McGraw Hill Education Pvt Ltd, New York, 2013, p. 128.Google Scholar
  45. 45.
    S. Kumar, V.S. Sarma, and B.S. Murty: Metall. Mater. Trans. A, 2009, vol. 40, pp. 223-31.CrossRefGoogle Scholar
  46. 46.
    A. Mahato, N. Verma, V. Jayaram, and S.K. Biswas: Acta Mater., 2011, vol. 59, pp. 6069-82.CrossRefGoogle Scholar
  47. 47.
    D. H. Buckley and R. L. Johnson, Marked influence of crystal structure on the friction and wear characteristics of cobalt and cobalt-base alloys in vacuum to lo-’- I: Polycrystalline and single crystal cobalt, N.A.S.A. tech. Note D-2523, 1964; ‘11: Cobalt alloys, N.A.S.A. tech. Note D-2524, 1964.Google Scholar
  48. 48.
    K. J. Bansali and A. E. Miller: Wear, 1982, vol. 75, pp. 241-52.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Shubhadeep Maity
    • 1
  • Dipak Kr. Chanda
    • 2
  • Parthiban Ramasamy
    • 3
  • Bijay Kumar Show
    • 1
  • Jürgen Eckert
    • 3
    • 4
  • Supriya Bera
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyDurgapurIndia
  2. 2.School of Materials Science and Nano TechnologyJadavpur UniversityKolkataIndia
  3. 3.Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesLeobenAustria
  4. 4.Department of Materials ScienceMontanuniversität LeobenLeobenAustria

Personalised recommendations