Advertisement

High-Temperature Mechanical Properties of Aluminum Alloy Matrix Composites Reinforced with Zr and Ni Trialumnides Synthesized by In Situ Reaction

  • Liwen Pan
  • Sainan Zhang
  • Yi Yang
  • Nikhil GuptaEmail author
  • Chao Yang
  • Yanjun Zhao
  • Zhiliu Hu
Article
  • 49 Downloads

Abstract

High-temperature strengths and stabilities of Al3Ni and Al3Zr phases can be used to develop heat-resistant Al-matrix composites. In the current study, Al-1Mg-0.8Mn-0.8V alloy matrix composites are synthesized by in-situ reaction of K2ZrF6 salt and Ni powder to yield Al3Zr- and Al3Ni-reinforcing phases. The as-cast microstructural and room-temperature and high-temperature tensile properties of the composite are investigated. The microstructure of the composites contain α-Al, Al3Zr, Al3Ni, and Al10V phases. The eutectic mixture comprises alternating Al3Ni and α-Al phases with fine Al3Zr precipitates distributed in the interlamellar regions. The (2 pct Al3Zr + 15.2 pct Al3Ni)/Al-alloy composite shows the highest mechanical properties at room temperature, with a tensile strength of 198 MPa and a fracture strain of 6.55 pct. At 200 and 300 °C, tensile strengths of (2 pct Al3Zr + 13.3 pct Al3Ni)/Al-alloy and (2 pct Al3Zr + 15.2 pct Al3Ni)/Al-alloy composites reach 175 MPa and 166 MPa, and 191 MPa and 155 MPa, respectively. At 350 °C, the highest tensile strength of this composite family reaches 82 MPa, which surpasses some of the existing Al-Si alloys used in automotive pistons, suggesting its potential high-temperature applications. Analysis indicates that the fracture mode of the present composites is ductile. Transgranular cleavage fracture of coarse, brittle Al10V phase, and microvoid coalescence are the main failure mechanisms.

Notes

Acknowledgments

The authors acknowledge the supports received from the Guangxi Natural Science Foundation (Grant No. 2016GXNSFAA380223), the Guangxi University Research Fund Project (Grant No. XJZ100343), and the Innovation Drive Development Foundation of Guangxi (Grant No. AA17202011). NG acknowledges the US-Egypt Cooperative Research Project (Award # OISE 1445686). Jieming Wen is thanked for providing the high-temperature electronic universal testing machine for the tensile test.

References

  1. 1.
    Farkoosh, A.R., Grant Chen, X., and Pekguleryuz, M., Materials Science and Engineering: A, 2015, vol. 620, pp. 181-189.CrossRefGoogle Scholar
  2. 2.
    Kumar, S., Panwar, R.S., and Pandey, O.P., Metallurgical and Materials Transactions A, 2013, vol. 44(3), pp. 1548-1565.CrossRefGoogle Scholar
  3. 3.
    Pandey, A.B., Majumdar, B.S., and Miracle, D.B., Metallurgical and Materials Transactions A, 2000, vol. 31(3), pp. 921-936.CrossRefGoogle Scholar
  4. 4.
    Gautam, G., Ghose, A.K., and Chakrabarty, I., Metallurgical and Materials Transactions A, 2015, vol. 46(12), pp. 5952-5961.CrossRefGoogle Scholar
  5. 5.
    Asghar, Z., Requena, G., and Boller, E., Acta Materialia, 2011, vol. 59(16), pp. 6420-6432.CrossRefGoogle Scholar
  6. 6.
    Javidani, M. and Larouche, D., International Materials Reviews, 2014, vol. 59(3), pp. 132-158.CrossRefGoogle Scholar
  7. 7.
    Mohamed, A.M.A., Samuel, F.H., and Kahtani, S.A., Mater. Sci. Eng. A, 2013, vol. 577, pp. 64-72.CrossRefGoogle Scholar
  8. 8.
    Ye, H., Journal of Materials Engineering and Performance, 2003, vol. 12(3), pp. 288-297.CrossRefGoogle Scholar
  9. 9.
    Shaha, S.K., Czerwinski, F., Kasprzak, W., Friedman, J., and Chen, D.L., Materials Science and Engineering: A, 2016, vol. 652, pp. 353-364.CrossRefGoogle Scholar
  10. 10.
    Li, G., Liao, H., Suo, X., Tang, Y., Dixit, U.S., and Petrov, P., Materials Science and Engineering: A, 2018, vol. 709, pp. 90-96.CrossRefGoogle Scholar
  11. 11.
    11. Rakhmonov, J., Timelli, G., and Bonollo, F., Materials Characterization, 2017, vol. 128, pp. 100-108.CrossRefGoogle Scholar
  12. 12.
    12. Lee, H.M., Lee, J., and Lee, Z.-H., Scripta Metallurgica et Materialia, 1991, vol. 25(3), pp. 517-520.CrossRefGoogle Scholar
  13. 13.
    13. Fan, Y. and Makhlouf, M.M., Materials Science and Engineering: A, 2016, vol. 654, pp. 228-235.CrossRefGoogle Scholar
  14. 14.
    Rakhmonov, J., Timelli, G., and Bonollo, F., Advanced Engineering Materials, 2016, vol. 18(7), pp. 1096-1105.CrossRefGoogle Scholar
  15. 15.
    Knipling, K.E., Dunand, D.C., and Seidman, D.N., Zeitschrift für Metallkunde, 2006, vol. 97(3), pp. 246-265.CrossRefGoogle Scholar
  16. 16.
    Fan, Y.Y. and Makhlouf, M.M., Materials Science Forum, 2013, vol. 765, pp. 8-12.CrossRefGoogle Scholar
  17. 17.
    Gao, T., Li, D., Wei, Z., and Liu, X., Materials Science and Engineering: A, 2012, vol. 552, pp. 523-529.CrossRefGoogle Scholar
  18. 18.
    Hernandez-Sandoval, J., Garza-Elizondo, G.H., Samuel, A.M., Valtiierra, S., and Samuel, F.H., Materials & Design, 2014, vol. 58, pp. 89-101.CrossRefGoogle Scholar
  19. 19.
    Uan, J.Y. and Lui, T.S., Cast Metals, 2016, vol. 6(4), pp. 210-216.CrossRefGoogle Scholar
  20. 20.
    Ragab, M. and Salem, H.G., Powder Technology, 2012, vol. 222, pp. 108-116.CrossRefGoogle Scholar
  21. 21.
    Li, Y., Yang, Y., Wu, Y., Wang, L., and Liu, X., Materials Science and Engineering: A, 2010, vol. 527(26), pp. 7132-7137.CrossRefGoogle Scholar
  22. 22.
    Yang, Y., Yu, K., Li, Y., Zhao, D., and Liu, X., Materials & Design, 2012, vol. 33, pp. 220-225.CrossRefGoogle Scholar
  23. 23.
    Girisha, H.N., Sharma, K.V., International Journal of Scientific & Engineering Research, 2012, vol. 3(2), pp. 1-4.Google Scholar
  24. 24.
    Nam, S.W., and Lee, D.H. (2000) Met. Mater., vol. 6(1), p. 13.CrossRefGoogle Scholar
  25. 25.
    Wang, F., Liu, Z., Qiu, D., Taylor, J.A., Easton, M.A., and Zhang, M.-X., Acta Materialia, 2013, vol. 61(1), pp. 360-370.CrossRefGoogle Scholar
  26. 26.
    Meng, F., Wang, Z., Zhao, Y., Zhang, D., and Zhang, W., Metals, 2016, vol. 7(1), pp. 10CrossRefGoogle Scholar
  27. 27.
    Gautam, G. and Mohan, A., Journal of Alloys and Compounds, 2015, vol. 649, pp. 174-183.CrossRefGoogle Scholar
  28. 28.
    Yang, H.-j., Zhao, Y.-t., Chen, G., Zhang, S.-l., and Chen, D.-b., Transactions of Nonferrous Metals Society of China, 2012, vol. 22(3), pp. 571-576.CrossRefGoogle Scholar
  29. 29.
    29. Lei, J., Xiaolu, W., Hui, L., Yutao, Z., Yonggang, Y., and Jianchao, C., Rare Metal Materials and Engineering, 2016, vol. 45(11), pp. 2798-2803.CrossRefGoogle Scholar
  30. 30.
    Wang, H., Li, G., Zhao, Y., and Zhang, Z., Journal of Alloys and Compounds, 2011, vol. 509(18), pp. 5696-5700.CrossRefGoogle Scholar
  31. 31.
    Fan, Y. and Makhlouf, M.M., Metallurgical and Materials Transactions A, 2015, vol. 46(9), pp. 3808-3812.CrossRefGoogle Scholar
  32. 32.
    Jones, D.R.H. and May, G.J., Acta Metall., 1975, vol. 23, 29-34.CrossRefGoogle Scholar
  33. 33.
    Davies, J.R., Courtney, T.H., and Przystupa, M.A., Metallurgical Transactions A, 1980, vol. 11(2), pp. 323-332.CrossRefGoogle Scholar
  34. 34.
    Uan, J.Y., Chen, L.H., and Lui, T.S., Acta Materialia, 2001, vol. 49(2), pp. 313-320.CrossRefGoogle Scholar
  35. 35.
    GmbH, M. (2016) Pistons and Engine Testing, 2nd edn. Springer, Stuttgart.CrossRefGoogle Scholar
  36. 36.
    Feng, J., Ye, B., Zuo, L., Qi, R., Wang, Q., Jiang, H., Huang, R., and Ding, W., Materials Science and Engineering: A, 2017, vol. 706, pp. 27-37.CrossRefGoogle Scholar
  37. 37.
    Yang, Y., Zhong, S.-Y., Chen, Z., Wang, M., Ma, N., and Wang, H., Journal of Alloys and Compounds, 2015, vol. 647, pp. 63-69.CrossRefGoogle Scholar
  38. 38.
    38. Wang, E.R., Hui, X.D., and Chen, G.L., Materials & Design, 2011, vol. 32(8-9), pp. 4333-4340.CrossRefGoogle Scholar
  39. 39.
    Qian, Z., Liu, X., Zhao, D., and Zhang, G., Materials Letters, 2008, vol. 62(14), pp. 2146-2149.CrossRefGoogle Scholar
  40. 40.
    Hatano, T., Physical Review B, 2006, vol. 74(2), pp. 020102(R)CrossRefGoogle Scholar
  41. 41.
    41. Wang, X., Zhao, Y., Chen, G., Cheng, X., Zhang, H., and Zhang, Z., Rare Metal Materials and Engineering, 2007, vol. 36(2), pp. 259-263.Google Scholar
  42. 42.
    42. Yamashita, K., Fujimoto, I., Murakumo, T., Kumal, S., and Sato, A., Philosophical Magazine A, 2000, vol. 80(1), pp. 219-235.CrossRefGoogle Scholar
  43. 43.
    Peng, G., Tietao, Z., Xiaoqing, X., Zhi, G., and Li, C., Rare Metal Materials and Engineering, 2013, vol. 42(1), pp. 6-13.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Liwen Pan
    • 1
    • 3
  • Sainan Zhang
    • 1
  • Yi Yang
    • 2
  • Nikhil Gupta
    • 2
    Email author
  • Chao Yang
    • 1
  • Yanjun Zhao
    • 1
  • Zhiliu Hu
    • 1
    • 3
  1. 1.Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, School of Resources, Environment and MaterialsGuangxi UniversityNanningP.R. China
  2. 2.Composite Materials and Mechanics Laboratory, Department of Mechanical and Aerospace Engineering, Tandon School of EngineeringNew York UniversityBrooklynUSA
  3. 3.Center Ecological Collaborative Innovation for Aluminum Industry in GuangxiNanningP.R. China

Personalised recommendations