Deep Understanding of the Influence of the Process Parameters During Linear Friction Welding on the Joint Quality and the Microstructural Changes of Two Mono-Material Titanium Alloy Joints: The β-Metastable Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti17) and the Near-α Ti-6Al-2Sn-4Zr-2Mo (Ti6242)

  • Dorick Ballat-Durand
  • Salima BouvierEmail author
  • Marion Risbet


Linear friction welding (LFW) of near-α Ti-6Al-2Sn-4Zr-2Mo (Ti6242) and β-metastable Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti17) was studied through eight sets of process parameters. Varying the main LFW process parameters revealed that: (1) increasing the ratio between the normal pressure and local flow stress shortens the duration of friction phase (III); this ratio is influenced by the normal pressure and/or heat generated by the longitudinal deformation conditions, the latter being driven by the oscillation parameters (amplitude and frequency); (2) the joint and PAZ extents can be drastically lowered by favoring the extrusion of the heated material through higher normal pressures; (3) the presence of defects is mostly due to contaminant layers initially present on the contact surfaces; these defects can be dissipated into the bulk with the help of an enhanced recrystallization and/or material blending; (4) the two-component {110}〈111〉 β texture intensity is mostly influenced by the amplitude and degree of recrystallization. Subjecting three significantly different Ti17 joints to β-annealing resulted in similar homogenized microstructures and defect dissolution. The different material responses of Ti17 and Ti6242 to LFW showed the necessity of defining optimized sets of process parameters depending on the welded materials and initial microstructures.



The authors acknowledge the financial support from the French National Research Agency (ANR) through the OPTIMUM ANR-14-CE27-0017 project as well as the Spatial and Aeronautic Research Foundation, Hauts-de-France Region and European Regional Development Fund (ERDF) 2014/2020 for the funding of this work. The authors are also grateful to ACB for providing LFW welded samples and Airbus for their technical support.


  1. 1.
    Liu, Z. & Welsch, G. : Metall. Trans. A, 1988, vol. 19, pp. 527–42.CrossRefGoogle Scholar
  2. 2.
    Huang, J. L., Warnken, N., Gebelin, J.-C., Strangwood, M. & Reed, R. C. : Acta Mater., 2012, vol. 60, pp. 3215–25.CrossRefGoogle Scholar
  3. 3.
    Maalekian, M. : Sci. Technol. Weld. Join., 2007, vol. 12, pp. 738–59.CrossRefGoogle Scholar
  4. 4.
    Vairis, A. & Frost, M. : Wear, 1998, vol. 217, pp. 117–31.CrossRefGoogle Scholar
  5. 5.
    Ballat-Durand, D., Bouvier, S., Risbet, M. & Pantleon, W. : Mater. Charact., 2018, vol. 144, 661–70.CrossRefGoogle Scholar
  6. 6.
    Ballat-Durand, D., Bouvier, S., Risbet, M. & Pantleon, W. : Mater. Charact., 2019, vol. 151, pp. 38-52.CrossRefGoogle Scholar
  7. 7.
    Li, W., Vairis, A., Preuss, M. & Ma, T. : Int. Mater. Rev., 2016, vol. 61, pp. 71–100.CrossRefGoogle Scholar
  8. 8.
    McAndrew, A. R., Colegrove, P. A., Bühr, C., Flipo, B. C. D. & Vairis, A. : Prog. Mater. Sci., 2018, vol. 92, pp. 225–57.CrossRefGoogle Scholar
  9. 9.
    Wanjara, P. & Jahazi, M. : Metall. Mater. Trans. A, 2005, vol. 36, pp. 2149–64.CrossRefGoogle Scholar
  10. 10.
    Romero, J., Attallah, M. M., Preuss, M., Karadge, M. & Bray, S. E. : Acta Mater., 2009, vol. 57, pp. 5582–92.CrossRefGoogle Scholar
  11. 11.
    Lütjering, G. & Williams, J. C. : Titanium (Springer Berlin Heidelberg, 2003).CrossRefGoogle Scholar
  12. 12.
    G.W. Stachowiak and A.W. Batchelor: Engineering Tribology, Elsevier, Amsterdam, 2001.Google Scholar
  13. 13.
    Humphreys, J., Roher, G. S. & Rollett, A. : Recrystallization and Related Annealing Phenomena (Elsevier, Amsterdam, 2017).Google Scholar
  14. 14.
    Turner, R., Gebelin, J.-C., Ward, R. M. & Reed, R. C. : Acta Mater., 2011, vol. 59, pp. 3792–803.CrossRefGoogle Scholar
  15. 15.
    V.K. Manupati, G. Rajyalakshmi, M.L.R. Varela, J. Machado, and G.D. Putnik: Innovation, Engineering and Entrepreneurship, J. Machado, F. Soares, and G. Veiga, eds., Springer, Berlin, 2018, vol. 505, pp. 608–15.Google Scholar
  16. 16.
    Smidoda, K., Gottschalk, W. & Gleiter, H. : Acta Metall., 1978, vol. 26, pp. 1833–36.CrossRefGoogle Scholar
  17. 17.
    Y. Mizuno: Temperature Dependence of Oxide Decomposition on Titanium Surfaces in UHV. United States.
  18. 18.
    Li, W., Suo, J., Ma, T., Feng, Y. & Kim, K. : Mater. Sci. Eng. A, 2014, vol. 599, pp. 38–45.CrossRefGoogle Scholar
  19. 19.
    Garcia, J. M. & Morgeneyer, T. F. : Fatigue & Fracture of Engineering Materials & Structures, 2019, vol. 42, pp. 1100-17.CrossRefGoogle Scholar
  20. 20.
    Vishwakarma, K., Ojo, O., Wanjara, P. & Chaturvedi, M. : JOM, 2014, vol. 66, pp. 2525-34.CrossRefGoogle Scholar
  21. 21.
    Masoumi, F., Shahriari, D., Jahazi, M., Cormier, J. & Flipo, B. C. D. : Metall. Mater. Trans. A, 2017, vol. 48, pp. 2886–99.CrossRefGoogle Scholar
  22. 22.
    Dalgaard, E., Wanjara, P., Gholipour, J., Cao, X. & Jonas, J. J. : Acta Mater., 2012, vol. 60, pp. 770–80.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Dorick Ballat-Durand
    • 1
  • Salima Bouvier
    • 1
    Email author
  • Marion Risbet
    • 1
  1. 1.Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire Roberval de Mécanique, UMR-CNRS 7337Compiegne CedexFrance

Personalised recommendations