Advertisement

Influence of Minor Cr-Additions to the Growth of Columnar Dendrites in Al-Zn Alloys: Influence of Icosahedral Short Range Order in the Liquid

  • Güven KurtulduEmail author
  • Philippe Jarry
  • Michel Rappaz
Article

Abstract

The effect of minute Cr additions on dendritic growth directions in Al-20 wt pct Zn alloy has been investigated. As first evidenced by Gonzales and Rappaz (Metall Mater Trans A 37:2797–2806, 2006) Al-Zn alloys exhibit a Dendrite Orientation Transition (DOT), from 〈100〉 below 25 wt pct Zn to 〈110〉 above 60 wt pct, regardless of the solidification speed. The DOT has been interpreted as a modification of the solid–liquid interfacial energy anisotropy (Gonzales and Rappaz, 2006; Haxhimali et al. in Nat Mater 5:660–664, 2006). However, 0.02 to 0.1 wt pct addition of Cr in Al-20 wt pct Zn drastically modifies the dendrite trunk direction from 〈100〉 to 〈110〉 at low solidification speed, typically 200 μm/s. Even more surprising, 〈100〉 dendrite trunks are retrieved in Al-20 wt pct Zn-0.1 wt pct Cr when the speed is increased to 1000 μm/s, but with the concurrent formation of twinned dendrites. Minute additions of Cr have been reported recently to promote icosahedral short range order (ISRO) in liquid Al-Zn, thus reducing the atomic mobility (Kurtuldu et al. in Acta Mater 115:423–433, 2016) and modifying the nucleation kinetics (Kurtuldu et al. in Acta Mater 61:7098–7108, 2013). The present results indicate that ISRO also modifies the attachment kinetics of icosahedral clusters rather than individual atoms, and is most likely responsible of growth direction change in Al-Zn-Cr alloy and of twinned dendrites formation.

Notes

Acknowledgments

The authors thank Constellium C-TEC, Voreppe, France for its financial support. They also thank the staff of the Interdisciplinary Centre for Electron Microscopy (CIME) of the Ecole Polytechnique Fédérale de Lausanne (EPFL) and the Swiss Light Source at the Paul Scherrer Institute, Switzerland. The authors acknowledge the valuable assistance of Jean-Daniel Wagnière to perform BS and DS experiments, Emmanuelle Boehm-Courjault for EBSD measurements, André Phillion, Jonathan Friedli, Jérôme Lozat and Julie Fife for their contribution during X-ray microtomography measurements.

References

  1. 1.
    J.A. Dantzig and M. Rappaz: Solidification: Revised & Expanded, 2nd edn., EPFL Press, Lausanne, 2016.Google Scholar
  2. 2.
    S. Henry, T. Minghetti, and M. Rappaz: Acta Mater., 1998, vol. 46, pp. 6431-43.CrossRefGoogle Scholar
  3. 3.
    M.A. Salgado-Ordorica: PhD Thesis, 4568, EPFL, Lausanne, Switzerland, 2009.Google Scholar
  4. 4.
    M.A. Salgado-Ordorica and M. Rappaz: Acta Mater., 2008, vol. 56, pp. 5708-18.CrossRefGoogle Scholar
  5. 5.
    J. Hérenguel: Rev. Métallurgie, 1948, vol. 45, pp. 139-46.CrossRefGoogle Scholar
  6. 6.
    A. Sémoroz, Y. Durandet, and M. Rappaz: Acta Mater., 2001, vol. 49, pp. 529-41.CrossRefGoogle Scholar
  7. 7.
    M. Bedel, G. Reinhart, A.A. Bogno, C.A. Gandin, S. Jacomet, E. Boller, H. Nguyen-Thi, and H. Henein: Acta Mater., 2015, vol. 89, pp. 234-46.CrossRefGoogle Scholar
  8. 8.
    R.E. Napolitano, S. Liu, and R. Trivedi: Interface Sci., 2002, vol. 10, pp. 217-32.CrossRefGoogle Scholar
  9. 9.
    S. Liu, R.E. Napolitano, and R. Trivedi: Acta Mater., 2001, vol. 49, pp. 4271-6.CrossRefGoogle Scholar
  10. 10.
    F. Gonzales and M. Rappaz: Metall. Mater. Trans. A 2006, vol. 37, pp. 2797-806.CrossRefGoogle Scholar
  11. 11.
    F. Gonzales and M. Rappaz: Metall. Mater. Trans. A 2008, vol. 39A, pp. 2148-60.CrossRefGoogle Scholar
  12. 12.
    T. Haxhimali, A. Karma, F. Gonzales, and M. Rappaz: Nat. Mater., 2006, vol. 5, pp. 660-4.CrossRefGoogle Scholar
  13. 13.
    J. Friedli, P. Di Napoli, M. Rappaz, and J.A. Dantzig: in IOP Conf. Series: Mater. Sci. Eng., vol. 33, 2012.Google Scholar
  14. 14.
    J. Friedli, J.L. Fife, P. Napoli, and M. Rappaz: Metall. Mater. Trans. A 44A, 2013, 5522-31.CrossRefGoogle Scholar
  15. 15.
    J.A. Dantzig, P. Napoli, J. Friedli, and M. Rappaz: Metallurgical and Materials Transactions A 44, 2013, pp. 5532-43.CrossRefGoogle Scholar
  16. 16.
    M. Becker, J.A. Dantzig, M. Kolbe, S.T. Wiese, and F. Kargl: Acta Mater., vol. 165, pp. 666-677, 2019.CrossRefGoogle Scholar
  17. 17.
    S.K. Chan, H.H. Reimer, and M. Kahlweit: J. Cryst. Growth, 1976, vol. 32, pp. 303-15.CrossRefGoogle Scholar
  18. 18.
    S. Akamatsu and T. Ihle: Phys. Rev. E 1997, vol. 56, 4479-85.CrossRefGoogle Scholar
  19. 19.
    J. Deschamps, M. Georgelin, and A. Pocheau: Europhys. Lett., 2006, vol. 76, pp. 291-97.CrossRefGoogle Scholar
  20. 20.
    A. Pocheau, J. Deschamps, and M. Georgelin: JOM, 2007, 59, 59.CrossRefGoogle Scholar
  21. 21.
    K.F. Kelton: Int. Mater. Rev., 1993, vol. 38, pp. 105-37.CrossRefGoogle Scholar
  22. 22.
    G. Kurtuldu, P. Jarry, and M. Rappaz: Acta Mater., 2013, vol. 61, pp. 7098-108.CrossRefGoogle Scholar
  23. 23.
    G. Kurtuldu and M. Rappaz: in IOP Conf. Ser. Mater. Sci. Eng., vol. 84, 2015.Google Scholar
  24. 24.
    M. Rappaz and G. Kurtuldu: J. Phase Equilibria Diffus., 2016, vol. 37, pp. 2–3.CrossRefGoogle Scholar
  25. 25.
    M. Rappaz and G. Kurtuldu: JOM, 2015, vol. 67, pp. 1812-20.CrossRefGoogle Scholar
  26. 26.
    G. Kurtuldu, P. Jarry, and M. Rappaz: Acta Mater., 2016, vol. 115, pp. 423–33.CrossRefGoogle Scholar
  27. 27.
    G. Kurtuldu, A. Sicco, and M. Rappaz: Acta Mater., 2014, vol. 70, pp. 240–8.CrossRefGoogle Scholar
  28. 28.
    G. Kurtuldu, K.F. Shamlaye, and J.F. Löffler: Proc. Natl. Acad. Sci., 2018, vol. 115, pp. 6123–8.CrossRefGoogle Scholar
  29. 29.
    28 J. Zollinger and M. Rappaz: Trans. Indian Inst. Met., 2018, vol. 71, pp. 2635–8.CrossRefGoogle Scholar
  30. 30.
    J. Zollinger, B. Rouat, J. Guyon, S.K. Pillai, and M. Rappaz: Metall. Mater. Trans. A, 2019, vol. 50, pp. 2279-88.CrossRefGoogle Scholar
  31. 31.
    M.E. Glicksman: Mater. Sci. Eng., 1984, vol. 65, pp. 45–55.CrossRefGoogle Scholar
  32. 32.
    M. Rappaz and E. Blank: J. Cryst. Growth, 1986, vol. 74, pp. 67–76.CrossRefGoogle Scholar
  33. 33.
    J. Friedli: PhD Thesis, 5128, EPFL, Lausanne, Switzerland, 2011.Google Scholar
  34. 34.
    G. Kurtuldu: PhD Thesis, 6057, EPFL, Lausanne, Switzerland, 2014.Google Scholar
  35. 35.
    N. Jakse and A. Pasturel: Phys. Rev. B, 2017, vol. 95, pp. 144210.CrossRefGoogle Scholar
  36. 36.
    A. Pasturel and N. Jakse: J. Chem. Phys., 2017, vol. 146, pp. 184502.CrossRefGoogle Scholar
  37. 37.
    O. Hunziker: Acta Mater., 2001, vol. 49, pp. 4191–203.CrossRefGoogle Scholar
  38. 38.
    J.J. Hoyt and M. Asta: Phys. Rev. B, 2002, vol. 65, pp. 214106.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Güven Kurtuldu
    • 1
    • 2
    Email author
  • Philippe Jarry
    • 3
  • Michel Rappaz
    • 1
  1. 1.Institute of Materials, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Laboratory of Metal Physics and Technology, Department of MaterialsETH ZurichZurichSwitzerland
  3. 3.Constellium C-TEC, ZI Centr’alpVoreppeFrance

Personalised recommendations