A Newly Generated Nearly Lamellar Microstructure in Cast Ti-48Al-2Nb-2Cr Alloy for High-Temperature Strengthening

  • Zitong Gao
  • Jieren YangEmail author
  • Yulun Wu
  • Rui Hu
  • Sang-Lan KimEmail author
  • Young-Won Kim


Alloy 4822 (Ti-48Al-2Cr-2Nb at. pct) cast material was given a controlled heat treatment cycle to generate a casting nearly lamellar (CNL) microstructure that enhances the temperature capability over its current engineering casting duplex (CDP) microstructure form. The cycle consisted of three steps: a short α field annealing, an α + γ field annealing, and then aging at a low temperature, with each step being followed by controlled cooling. The resulted microstructure is shown to be a mixture of non-uniformly distributed ~ 250 μm size lamellar colonies containing ~ 0.15 µm spaced laths. Standard tensile testing at 700 °C shows a yield stress of 344 MPa that is ~ 55 MPa greater than that of the current engineering CDP form. The sequential microstructure evolution processes following the three-step thermal cycle are assessed and explained in terms of phase transformations taking place across and below the α transus upon isothermal treatment and subsequent cooling. The resulted increases in high-temperature strengthening are explained by the colony and γ grain size distributions. The strengthening mechanism along with the significance is discussed.



The current study was financially supported by the National Natural Science Foundation of China (Nos. 51401168 and 51774238) and the 2018 Joint Foundation of Ministry of Education for Equipment Pre-research (No. 6141A020332).


  1. 1.
    Y.W. Kim: JOM, 1994, vol. 46, pp. 30-49.CrossRefGoogle Scholar
  2. 2.
    H. Clemens and H. Kestler: Adv. Eng. Mater., 2000, vol. 2, pp. 551-70.CrossRefGoogle Scholar
  3. 3.
    Y-W. Kim and S.L. Kim: JOM, 2018, vol. 70, pp. 553-60.CrossRefGoogle Scholar
  4. 4.
    C. Austin and T. Kelly: Structural Intermetallics, 1993, TMS, pp. 143–50.Google Scholar
  5. 5.
    B. London, D. Larsen, D.A. Wheeler, and P.R. Aimone: Structural Intermetallics, 1993, TMS, pp. 151–57.Google Scholar
  6. 6.
    F. Appel, J.D.H. Paul, M. Oehring, C. Buque, C. Klinkenberg, and T. Carneiro: Niobium for High Temperature Applications, 2004, TMS, pp. 139–52.Google Scholar
  7. 7.
    H. Clemens, H.F. Chladil, W. Wallgram, G.A. Zickler, R. Gerling, K.-D. Liss, S. Kremmer, V. Güther, and W. Smarsl: Intermetallics, 2008, vol. 16, pp. 827-33.CrossRefGoogle Scholar
  8. 8.
    G.L. Chen, W.J. Zhang, Z.C. Liu, S.J. Li, and Y-W. Kim: Gamma Titanium Aluminides 1999, 1999, TMS, pp. 371–80.Google Scholar
  9. 9.
    M.J. Weimer and T.J. Kelly: GE Aviation, Ohio, Unpublished Results Presented at 3rd int’l Workshop on Gamma TiAl Technologies, 2006.Google Scholar
  10. 10.
    B.P. Bewlay, M. Weimer, T. Kelly, A. Suzuki, and P.R. Subramanian: Intermetallic-Based Alloys-Science, Technology, and Applications, Mater. Res. Soc. Symp. Proc., Warrendale, PA, 2012, vol. 1516, pp. 49–58.Google Scholar
  11. 11.
    W. Smarsly, J. Esslinger, and H. Clemens: MTU, Germany, research and development results presented at GTA-2014, 2014.Google Scholar
  12. 12.
    Habel U, Heutling F, Helm D, Kunze C, Smarsly W, Das G, Clemens H: World Titanium. Wiley, Hoboken, pp. 1223-27 (2015)Google Scholar
  13. 13.
    Y-W. Kim and D.M. Dimiduk: JOM, 1991, vol. 41, pp. 40-47.CrossRefGoogle Scholar
  14. 14.
    Y-W. Kim, Acta Metall. Mater. 1992, vol. 40, pp. 1121-34.CrossRefGoogle Scholar
  15. 15.
    X.J. Xu, Y.L. Wang, F.Z. Gao, and G.L. Chen: J. alloys compd., 2006, vol. 414, pp. 131-36.CrossRefGoogle Scholar
  16. 16.
    X.J. Xu, J.P. Lin, Z.K. Teng, Y.L. Wang, and G.L. Chen: Mater. Lett., 2007, vol. 61, pp. 369-73.CrossRefGoogle Scholar
  17. 17.
    G. Yang, H.C. Kou, Y. Liu, J.R. Yang, J. Wang, S.Y. Zhang, J.S. Li, and H.Z. Fu: Intermetallics, 2015, vol. 63, pp. 1-6.CrossRefGoogle Scholar
  18. 18.
    Y.W. Kim: JOM, 1989, vol. 41, pp. 24-30.CrossRefGoogle Scholar
  19. 19.
    B.D. Worth, J.W. Jones, and J.E. Allison: Metall. Mater. Trans. A, 1995, vol. 264, pp. 2947-59.CrossRefGoogle Scholar
  20. 20.
    Y.W. Kim, Mater. Sci. Eng. A, 1995, vol. A192/193, pp. 519-533.CrossRefGoogle Scholar
  21. 21.
    Y.W. Kim: Intermetallics, 1998, vol. 6, pp. 623-28.CrossRefGoogle Scholar
  22. 22.
    J.C. Schuster and M.Palm: J. Phase Equilib. Diff., 2006, vol. 27, pp. 255–77.CrossRefGoogle Scholar
  23. 23.
    U.R. Kattner, J.C. Lin, and Y.A. Chang: Metall. Mater. Trans. A, 1992, vol. 23, pp. 2081-90.CrossRefGoogle Scholar
  24. 24.
    Y.L. Jung and J.K. Park: Acta Mater., 1998, vol. 46, pp. 4123-30.CrossRefGoogle Scholar
  25. 25.
    M.J. Blackburn: The Science Technology & Application of Titanium, Pergamon Press, Oxford, United Kindom, 1970, pp. 633-43.CrossRefGoogle Scholar
  26. 26.
    A. Denquin and S. Naka: Acta Mater., 1996, vol. 44, pp. 343-52.CrossRefGoogle Scholar
  27. 27.
    S.A. Jones and M.J. Kafuman: Acta Metall. Mater., 1993, vol. 41, pp. 387-98.CrossRefGoogle Scholar
  28. 28.
    M. Charpentier, A. Hazotte, and D. Daloz: Mater. Sci. Eng. A, 2008, vol. 491, pp. 321-30.CrossRefGoogle Scholar
  29. 29.
    Z.W. Huang: Scr. Mater., 2005, vol. 52, pp. 1021-25.CrossRefGoogle Scholar
  30. 30.
    Y.W. Cui, G.L. Xu, R. Kato, X.G. Lu, R. Kainuma, and K. Ishida: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1621–25.CrossRefGoogle Scholar
  31. 31.
    M. Koppers, C. Herzig, M. Friesel, and Y. Mishin: Acta. Mater., 1997, vol. 45, pp. 4181-91.CrossRefGoogle Scholar
  32. 32.
    C.M. Sellars and J. A. Whiteman: Metal Sci., 1978, vol. 13, pp. 187-94.CrossRefGoogle Scholar
  33. 33.
    S.F. Franzén and J. Karlsson: Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2010.Google Scholar
  34. 34.
    J.H. Moll: JOM, 2000, vol. 52, 32-34.CrossRefGoogle Scholar
  35. 35.
    H. Clemens and S. Mayer: Adv. Eng. Mater., 2013, vol. 15, pp. 191-215.CrossRefGoogle Scholar
  36. 36.
    Y. Xia, P. Yu, G.B. Schaffer, and M. Qian: Mater. Sci. Eng. A, 2013, vol. 574, pp. 176-85.CrossRefGoogle Scholar
  37. 37.
    Q. Wang, R. Chen, X. Gong, J. Guo, Y. Su, H. Ding, and H. Fu: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4555–64.CrossRefGoogle Scholar
  38. 38.
    S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, and C. Badini: Intermetallics, 2011, vol. 19, pp. 776-81.CrossRefGoogle Scholar
  39. 39.
    D. Hu: Intermetallics, 2001, vol. 9, pp. 1037-43.CrossRefGoogle Scholar
  40. 40.
    X.H. Wu: Intermetallics, 2006, vol. 14, pp. 1114-22.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anP.R. China
  2. 2.Gamteck LLCDaytonUSA

Personalised recommendations