Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Strain-Induced Precipitation on the Austenite Non-recrystallization (Tnr) Behavior of a High Niobium Microalloyed Steel

  • 177 Accesses

  • 1 Citations


The non-recrystallization temperature (Tnr) of high niobium microalloyed steel was determined from both multihit and double-hit compression tests obtained under plane strain condition. The Tnr was determined to be in the range of 985 °C to 1010 °C for multihit conditions. The double-hit tests carried out at an interpass time of 5 seconds gave very low Tnr in the range of 860 °C to 900 °C. In order to understand this, double-hit experiments were carried out for different interpass times (2, 15, 100 seconds) at three different temperatures (950 °C, 1050 °C, and 1150 °C). The negative softening behavior was observed at 950 °C for higher interpass times of 15 and 100 seconds. This implies that the Tnr of this steel is well above 950 °C. This was due to the high amount of strain-induced precipitation of niobium carbonitrides at higher interpass times as revealed from TEM investigation. The precipitate size evolution considering the Dutta and Sellars nucleation condition in TC-PRISMA agrees well with the experimentally observed precipitate sizes. However, the evolution of Zener pinning forces considering TC-PRISMA nucleation condition is similar to both reported and experimentally determined values. The evolution of tensile properties also correlates well with the observed austenite recrystallization softening behavior. Therefore, a minimum interpass time of 15 seconds is required during double-hit compression tests to effectively precipitate Nb(C, N) and delay the static recrystallization softening behavior of this steel. This lead to the determination of comparable Tnr values between double-hit and multihit methods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23


  1. 1.

    L. Backe: PhD Thesis, Material Science and Engineering, School of Industrial Engineering and Management, Royal Institute of Technology, Sweden, 2009.

  2. 2.

    R.D.K. Misra, G.C. Weatherly, J.E. Hartmann and A.J. Boucek: Mater. Sci. Technol., 2001, vol.17, pp.1119-29.

  3. 3.

    H.G. Hillenbrand, M. Gras, and C. Kalwa: Niobium 2001, Orlanda, USA, December 2–5, 2001.

  4. 4.

    D.B. Rosado W.D. Waele, D. Vanderschueren, and S. Hertelé: Latest developments in mechanical properties and metallurgical features of high strength line pipe steels (Academic Bibliography, Universiteit Gent, Sustainable construction and design, 2013). https://biblio.ugent.be/publication/3219348/file/3219414. Accessed 24 Feb 2019.

  5. 5.

    S. Vervynckt, K. Verbeken, P. Thibaux, M. Liebeherr and Y. Houbaert: Mater. Sci. Forum, 2010, vol. 638-642, pp. 3567-72.

  6. 6.

    S. Vervynckt, K. Verbeken, P. Thibaux, and Y. Houbaert: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5519-28.

  7. 7.

    S. Vervynckt, K. Verbeken, P. Thibaux, M. Liebeherr and Y. Houbaert: ISIJ Int., 2009, vol. 49, pp. 911-20.

  8. 8.

    M. Gomez, S.F. Medina and P. Valles: ISIJ Int., 2005, vol. 45, pp. 1711-20.

  9. 9.

    R. Abad, A.I. Fernandez, B. Lopez and J.M. Rodriguez-Ibabe: ISIJ Int., 2001, vol. 41, pp. 1295-300.

  10. 10.

    M.I. Vega, S.F. Medina, M. Chapa, A. Quispe: ISIJ Int., 1999, vol. 39, pp. 1304-10.

  11. 11.

    L.P. Karjalainen, T.M. Maccagno and J. J. Jonas: ISIJ Int., 1995, vol. 35, pp. 1523-31.

  12. 12.

    N. Radovic, D. Drobnjak and K. Raic: MJoM, 2009, vol. 15, pp. 99-104.

  13. 13.

    S. Vervynckt, K. Verbeken, B. Lopez, and J.J. Jonas: Int. Mater. Rev., 2012, vol. 57, pp. 187-207.

  14. 14.

    C.N. Homsher: Masters thesis, Colorado School of Mines, 2013.

  15. 15.

    C.N. Homsher, and C.J. Van Tyne: Mater. Perform. Charact., 2015, vol. 4, pp. 293-306.

  16. 16.

    S. Vervynckt, K. Verbeken, P. Thibaux, and Y. Houbaert: Steel Res. Int., 2010, vol. 82, pp. 369-78.

  17. 17.

    T.M. Maccagno, J.J. Jonas, S. Yue, B.J. McCrady, R. Slobodian and D. Deeks: ISIJ Int., 1994, vol. 34, pp. 917-22.

  18. 18.

    J.J. Jonas: ISIJ Int., 2000, vol. 40, pp. 731-38.

  19. 19.

    L.N. Pussegoda and J.J. Jonas: ISIJ Int., 1991, vol. 31, pp. 278-88.

  20. 20.

    Z. Baochun, L. Guiyan, Y. Pingyuan and H. Lei: J. Mater. Res., 2016, vol. 31, pp. 2097-104.

  21. 21.

    A.M. Elwazri, E. Essadiqi and S. Yue: ISIJ Int., 2004, vol. 44, pp. 162-70.

  22. 22.

    M. Gomez, S. F. Medina, A. Quispe and P. Valles: ISIJ Int., 2002, vol. 42, pp. 423-31.

  23. 23.

    C.Y. Zhao, G.L. Wu and X.B. Liu: J. South. Afr. Inst. Min. Metall., 2017, vol. 117, pp. 451-56.

  24. 24.

    S. Bao, G. Zhao, C. Yu, Q. Chang, C. Ye and X. Mao: Appl. Math. Model., 2011, vol. 35, pp. 3268-75.

  25. 25.

    L. Liang-yun, Q. Chun-lin, Z. De-wen, G. Xiu-hua, and D. Lin-xiu: J. Iron Steel Res. Int., 2011, vol. 18, pp. 55-60.

  26. 26.

    M. Gomez, L. Rancel and S.F. Medina: Met. Mater. Int., 2009, vol. 15, pp. 689-99.

  27. 27.

    S.F. Medina and J.E. Mancilla: ISIJ Int., 1996, vol. 36, pp. 1077-83.

  28. 28.

    S.F. Medina and A. Quispe: ISIJ Int., 1996, vol. 45, pp. 1295-300.

  29. 29.

    S. Zhou, K. Zhang, N. Chen, J. Gu and Y. Rong: ISIJ Int., 2011, vol. 51, pp. 1688-95.

  30. 30.

    Z. Jia, R.D.K. Misra, R.O. Malley, and S.J. Jansto: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7077-83.

  31. 31.

    E.V. Pereloma, A.G. Kostryzhev, A. Alshahrani, C. Zhu, J.M. Cairney, C.R. Killmore and S.P. Ringer: Scr. Mater., 2014, vol. 75, pp. 74-77.

  32. 32.

    W.M. Rainforth, M.P. Black, R.L. Higginson, E.J. Palmiere, C.M. Sellars, I. Prabst, P. Warbichler and F. Hofer: Acta Mater., 2002, vol. 50, pp. 735-47.

  33. 33.

    P. Motycka and M. Kover: 2nd International Conference on Recent Trends in Structural Materials, Plzen, Czech Republic, November 21–22, 2012.

  34. 34.

    V. Nagarajan, E.J. Palmiere and C. M. Sellars: Mater. Sci. Technol., 2009, vol. 25, pp. 1168-74.

  35. 35.

    J.S. Langer and A. J. Schwartz: Phys. Rev. A 1980, vol. 21, pp. 948-58.

  36. 36.

    R. W. Cahn, P. Haasen and E.J. Kramer: Material Science Technology, Wiley-VCHVerlag GmbH&Co. KGaA, Weinheim, Germany, 1991, pp. 213-304.

  37. 37.

    B. Dutta, E. Valdes and C.M. Sellars: Acta Metall. Mater., 1992, vol. 40, pp. 653-62.

  38. 38.

    B. Dutta, E. J. Palmiere and C.M. Sellars: Acta Mater., 2001, vol. 49, pp. 785-94.

  39. 39.

    M. Fukuhara and A. Sanpei: ISIJ Int., 1993, vol. 33, pp. 508-12.

  40. 40.

    J.W. Cahn: Acta Metall.,1956, vol. 4, pp. 572-75.

Download references


The authors from CSIR-NML thank their Director for his kind permission to publish this work. It is a collaborative work between CSIR-NML and IITK. We thank Dr. Amar De, Arcelor Mittal USA, Global R&D, Chicago, USA for providing the microalloyed steel plates. The first author VR also thanks iPSG-NML for funding this project work under Grant No. OLP-0214.

Author information

Correspondence to Sandip Ghosh Chowdhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 29, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 361 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajinikanth, V., Kumar, T., Mahato, B. et al. Effect of Strain-Induced Precipitation on the Austenite Non-recrystallization (Tnr) Behavior of a High Niobium Microalloyed Steel. Metall and Mat Trans A 50, 5816–5838 (2019). https://doi.org/10.1007/s11661-019-05488-3

Download citation