Metallurgical and Materials Transactions A

, Volume 50, Issue 12, pp 5816–5838 | Cite as

Effect of Strain-Induced Precipitation on the Austenite Non-recrystallization (Tnr) Behavior of a High Niobium Microalloyed Steel

  • V. Rajinikanth
  • Tipu Kumar
  • B. Mahato
  • Sandip Ghosh ChowdhuryEmail author
  • Sandeep Sangal


The non-recrystallization temperature (Tnr) of high niobium microalloyed steel was determined from both multihit and double-hit compression tests obtained under plane strain condition. The Tnr was determined to be in the range of 985 °C to 1010 °C for multihit conditions. The double-hit tests carried out at an interpass time of 5 seconds gave very low Tnr in the range of 860 °C to 900 °C. In order to understand this, double-hit experiments were carried out for different interpass times (2, 15, 100 seconds) at three different temperatures (950 °C, 1050 °C, and 1150 °C). The negative softening behavior was observed at 950 °C for higher interpass times of 15 and 100 seconds. This implies that the Tnr of this steel is well above 950 °C. This was due to the high amount of strain-induced precipitation of niobium carbonitrides at higher interpass times as revealed from TEM investigation. The precipitate size evolution considering the Dutta and Sellars nucleation condition in TC-PRISMA agrees well with the experimentally observed precipitate sizes. However, the evolution of Zener pinning forces considering TC-PRISMA nucleation condition is similar to both reported and experimentally determined values. The evolution of tensile properties also correlates well with the observed austenite recrystallization softening behavior. Therefore, a minimum interpass time of 15 seconds is required during double-hit compression tests to effectively precipitate Nb(C, N) and delay the static recrystallization softening behavior of this steel. This lead to the determination of comparable Tnr values between double-hit and multihit methods.



The authors from CSIR-NML thank their Director for his kind permission to publish this work. It is a collaborative work between CSIR-NML and IITK. We thank Dr. Amar De, Arcelor Mittal USA, Global R&D, Chicago, USA for providing the microalloyed steel plates. The first author VR also thanks iPSG-NML for funding this project work under Grant No. OLP-0214.

Supplementary material

11661_2019_5488_MOESM1_ESM.pdf (362 kb)
Supplementary material 1 (PDF 361 kb)


  1. 1.
    L. Backe: PhD Thesis, Material Science and Engineering, School of Industrial Engineering and Management, Royal Institute of Technology, Sweden, 2009.Google Scholar
  2. 2.
    R.D.K. Misra, G.C. Weatherly, J.E. Hartmann and A.J. Boucek: Mater. Sci. Technol., 2001, vol.17, pp.1119-29.CrossRefGoogle Scholar
  3. 3.
    H.G. Hillenbrand, M. Gras, and C. Kalwa: Niobium 2001, Orlanda, USA, December 2–5, 2001.Google Scholar
  4. 4.
    D.B. Rosado W.D. Waele, D. Vanderschueren, and S. Hertelé: Latest developments in mechanical properties and metallurgical features of high strength line pipe steels (Academic Bibliography, Universiteit Gent, Sustainable construction and design, 2013). Accessed 24 Feb 2019.
  5. 5.
    S. Vervynckt, K. Verbeken, P. Thibaux, M. Liebeherr and Y. Houbaert: Mater. Sci. Forum, 2010, vol. 638-642, pp. 3567-72.CrossRefGoogle Scholar
  6. 6.
    S. Vervynckt, K. Verbeken, P. Thibaux, and Y. Houbaert: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5519-28.CrossRefGoogle Scholar
  7. 7.
    S. Vervynckt, K. Verbeken, P. Thibaux, M. Liebeherr and Y. Houbaert: ISIJ Int., 2009, vol. 49, pp. 911-20.CrossRefGoogle Scholar
  8. 8.
    M. Gomez, S.F. Medina and P. Valles: ISIJ Int., 2005, vol. 45, pp. 1711-20.CrossRefGoogle Scholar
  9. 9.
    R. Abad, A.I. Fernandez, B. Lopez and J.M. Rodriguez-Ibabe: ISIJ Int., 2001, vol. 41, pp. 1295-300.CrossRefGoogle Scholar
  10. 10.
    M.I. Vega, S.F. Medina, M. Chapa, A. Quispe: ISIJ Int., 1999, vol. 39, pp. 1304-10.CrossRefGoogle Scholar
  11. 11.
    L.P. Karjalainen, T.M. Maccagno and J. J. Jonas: ISIJ Int., 1995, vol. 35, pp. 1523-31.CrossRefGoogle Scholar
  12. 12.
    N. Radovic, D. Drobnjak and K. Raic: MJoM, 2009, vol. 15, pp. 99-104.Google Scholar
  13. 13.
    S. Vervynckt, K. Verbeken, B. Lopez, and J.J. Jonas: Int. Mater. Rev., 2012, vol. 57, pp. 187-207.CrossRefGoogle Scholar
  14. 14.
    C.N. Homsher: Masters thesis, Colorado School of Mines, 2013.Google Scholar
  15. 15.
    C.N. Homsher, and C.J. Van Tyne: Mater. Perform. Charact., 2015, vol. 4, pp. 293-306.Google Scholar
  16. 16.
    S. Vervynckt, K. Verbeken, P. Thibaux, and Y. Houbaert: Steel Res. Int., 2010, vol. 82, pp. 369-78.CrossRefGoogle Scholar
  17. 17.
    T.M. Maccagno, J.J. Jonas, S. Yue, B.J. McCrady, R. Slobodian and D. Deeks: ISIJ Int., 1994, vol. 34, pp. 917-22.CrossRefGoogle Scholar
  18. 18.
    J.J. Jonas: ISIJ Int., 2000, vol. 40, pp. 731-38.CrossRefGoogle Scholar
  19. 19.
    L.N. Pussegoda and J.J. Jonas: ISIJ Int., 1991, vol. 31, pp. 278-88.CrossRefGoogle Scholar
  20. 20.
    Z. Baochun, L. Guiyan, Y. Pingyuan and H. Lei: J. Mater. Res., 2016, vol. 31, pp. 2097-104.CrossRefGoogle Scholar
  21. 21.
    A.M. Elwazri, E. Essadiqi and S. Yue: ISIJ Int., 2004, vol. 44, pp. 162-70.CrossRefGoogle Scholar
  22. 22.
    M. Gomez, S. F. Medina, A. Quispe and P. Valles: ISIJ Int., 2002, vol. 42, pp. 423-31.CrossRefGoogle Scholar
  23. 23.
    C.Y. Zhao, G.L. Wu and X.B. Liu: J. South. Afr. Inst. Min. Metall., 2017, vol. 117, pp. 451-56.CrossRefGoogle Scholar
  24. 24.
    S. Bao, G. Zhao, C. Yu, Q. Chang, C. Ye and X. Mao: Appl. Math. Model., 2011, vol. 35, pp. 3268-75.CrossRefGoogle Scholar
  25. 25.
    L. Liang-yun, Q. Chun-lin, Z. De-wen, G. Xiu-hua, and D. Lin-xiu: J. Iron Steel Res. Int., 2011, vol. 18, pp. 55-60.CrossRefGoogle Scholar
  26. 26.
    M. Gomez, L. Rancel and S.F. Medina: Met. Mater. Int., 2009, vol. 15, pp. 689-99.CrossRefGoogle Scholar
  27. 27.
    S.F. Medina and J.E. Mancilla: ISIJ Int., 1996, vol. 36, pp. 1077-83.CrossRefGoogle Scholar
  28. 28.
    S.F. Medina and A. Quispe: ISIJ Int., 1996, vol. 45, pp. 1295-300.CrossRefGoogle Scholar
  29. 29.
    S. Zhou, K. Zhang, N. Chen, J. Gu and Y. Rong: ISIJ Int., 2011, vol. 51, pp. 1688-95.CrossRefGoogle Scholar
  30. 30.
    Z. Jia, R.D.K. Misra, R.O. Malley, and S.J. Jansto: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7077-83.CrossRefGoogle Scholar
  31. 31.
    E.V. Pereloma, A.G. Kostryzhev, A. Alshahrani, C. Zhu, J.M. Cairney, C.R. Killmore and S.P. Ringer: Scr. Mater., 2014, vol. 75, pp. 74-77.CrossRefGoogle Scholar
  32. 32.
    W.M. Rainforth, M.P. Black, R.L. Higginson, E.J. Palmiere, C.M. Sellars, I. Prabst, P. Warbichler and F. Hofer: Acta Mater., 2002, vol. 50, pp. 735-47.CrossRefGoogle Scholar
  33. 33.
    P. Motycka and M. Kover: 2nd International Conference on Recent Trends in Structural Materials, Plzen, Czech Republic, November 21–22, 2012.Google Scholar
  34. 34.
    V. Nagarajan, E.J. Palmiere and C. M. Sellars: Mater. Sci. Technol., 2009, vol. 25, pp. 1168-74.CrossRefGoogle Scholar
  35. 35.
    J.S. Langer and A. J. Schwartz: Phys. Rev. A 1980, vol. 21, pp. 948-58.CrossRefGoogle Scholar
  36. 36.
    R. W. Cahn, P. Haasen and E.J. Kramer: Material Science Technology, Wiley-VCHVerlag GmbH&Co. KGaA, Weinheim, Germany, 1991, pp. 213-304.Google Scholar
  37. 37.
    B. Dutta, E. Valdes and C.M. Sellars: Acta Metall. Mater., 1992, vol. 40, pp. 653-62.CrossRefGoogle Scholar
  38. 38.
    B. Dutta, E. J. Palmiere and C.M. Sellars: Acta Mater., 2001, vol. 49, pp. 785-94.CrossRefGoogle Scholar
  39. 39.
    M. Fukuhara and A. Sanpei: ISIJ Int., 1993, vol. 33, pp. 508-12.CrossRefGoogle Scholar
  40. 40.
    J.W. Cahn: Acta Metall.,1956, vol. 4, pp. 572-75.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • V. Rajinikanth
    • 1
    • 2
  • Tipu Kumar
    • 1
  • B. Mahato
    • 1
  • Sandip Ghosh Chowdhury
    • 1
    Email author
  • Sandeep Sangal
    • 2
  1. 1.CSIR-National Metallurgical LaboratoryJamshedpurIndia
  2. 2.Department of Materials Science EngineeringIIT KanpurKanpurIndia

Personalised recommendations