Advertisement

About Equilibrium Mode Ruling Ferritic Transformation in Low-Alloy SGI

  • Laura Noel GarcíaEmail author
  • Fernando Diego Carazo
  • Roberto Enrique Boeri
Article
  • 8 Downloads

Abstract

Ferrite precipitating around the graphite nodules shaping the typical bull’s-eye microstructure could grow under negligible partitioning local equilibrium or under paraequilibrium conditions, as both imply that ferrite inherits the composition of the parent austenite. The first mechanism has been rejected by other researchers by means of simple calculations of the silicon spike width necessary for local equilibrium conditions to take place. Nevertheless, experimental analyses are necessary to verify this conclusion. In this study, transmission electron microscopy has been used to assess the presence of a silicon spike in front of the growing ferrite interface. The outcome allowed the authors to confirm that a paraequilibrium mode governs the transformation, supporting the conclusions of previous calculations. In addition, some issues about ferrite growth modeling are discussed.

Notes

Acknowledgments

The authors would like to thank the Sánchez and Piccioni Company for providing them its facilities to carry out the casts and Dr. Tolley (CAB-CNEA) for his help with the TEM measurements. L.N. García, F.D. Carazo, and R.E. Boeri are members of CONICET and would like to thank the institution for the economic support for their respective researches. L.N. García would like to especially thank the SECITI (Secretaría de Estado de Ciencia, Tecnología e Innovación del Gobierno de San Juan) and the INP school for the economic support for her stay at the CIRIMAT laboratory at Toulouse, France. Finally, L.N. García would like to deeply thank Prof. Jacques Lacaze for transmitting his knowledge about Thermo-Calc software and for enriching the discussions of this research.

References

  1. 1.
    J. Lacaze, C. Wilson and C. Bak. Scand. J. Metall, 1994, vol 23, pp. 151-163.Google Scholar
  2. 2.
    V. Gerval and J. Lacaze. ISIJ Int, 2000, vol 40, pp. 386-392.CrossRefGoogle Scholar
  3. 3.
    D. E. Coates. Metall. Mater. Trans. B, 1973, vol 4, pp. 1077-1086.CrossRefGoogle Scholar
  4. 4.
    M. Wessen and I.L. Svensson. Metall. Trans. A, 1996, vol 27A, pp. 2209-2220.CrossRefGoogle Scholar
  5. 5.
    R. Boeri and F. Weinberg. AFS Trans, 1989, vol 97, pp. 179-184.Google Scholar
  6. 6.
    J. Lacaze, J. Sertucha, L.M. Åberg, ISIJ Int. vol 56, pp. 1606-1615 (2016).CrossRefGoogle Scholar
  7. 7.
    X. Guo, D. Stefanescu, Int. J. Cast Met. Res. vol 11, pp. 437-442 (1999)CrossRefGoogle Scholar
  8. 8.
    A. Freulon, P. de Parseval, C. Josse, J. Bourdie and J. Lacaze. Metall. Trans. A, 2016, vol 47A, pp. 5362-5371.CrossRefGoogle Scholar
  9. 9.
    D. Stefanescu. Metall. Trans. A, 2017, vol 48A, pp. 2127-2129.CrossRefGoogle Scholar
  10. 10.
    J. Lacaze. Metall. Trans. A, 2017, vol. 48A, pp. 2130-2131.CrossRefGoogle Scholar
  11. 11.
    G. Rivera, R. Boeri and J.A. Sikora. Cast Met, 1995, vol 8, pp. 1-5.CrossRefGoogle Scholar
  12. 12.
    L.N. García, F.D. Carazo and P.M. Dardati. Int. J. Cast. Met. Res, 2018, vol 31, pp. 209-221.Google Scholar
  13. 13.
    ASTM A536-84(2019)e1, Standard Specification for Ductile Iron Castings, ASTM International, West Conshohocken, PA, 2019, www.astm.org.
  14. 14.
    R. Ivanova, W. Sha and S. Malinov. ISIJ Int, 2004, vol 44, pp. 886-895.CrossRefGoogle Scholar
  15. 15.
    L.A. Currie. Anal. Chim. Acta, 1999, vol 391, pp. 127-134.CrossRefGoogle Scholar
  16. 16.
    J.O. Andersson, T. Helander, L. Höglund, et al. Calphad, 2002, vol 26, pp. 273-312.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.CONICETBuenos AiresArgentina
  2. 2.Instituto de Mecánica AplicadaUniversidad Nacional de San JuanSan JuanArgentina
  3. 3.Instituto de Investigaciones en Ciencia y Tecnología de MaterialesUniversidad Nacional de Mar del Plata-CONICETMar del PlataArgentina

Personalised recommendations