Advertisement

An Investigation on Microstructures and Mechanical Properties of Ultra-Low Cu Layer Thickness Ratio Cu/8011/1060 Clads

  • Guoping Liu
  • Qudong WangEmail author
  • Zhengping Shang
  • Liugen Luo
  • Bing Ye
  • Haiyan Jiang
  • Wenjiang Ding
Article
  • 1 Downloads

Abstract

High-performance, ultra-low Cu layer thickness ratio pure Cu/8011 Al alloy/1060 Al alloy (Cu/8011/1060, for short) clads were first fabricated by roll casting and then roll bonding. The effects of rolling reduction rates on the microstructural evolutions and mechanical properties of Cu/8011/1060 clads during the roll-bonding process have been systematically investigated. Results show that the continuous but unequal-thickness intermetallic compound (IMC) layer is fractured after roll bonding. The fracture location is mainly at the transition zone between type I and type II IMCs or in the interiors of type I and type II IMCs. The IMCs are identified as Al4Cu9, AlCu and Al2Cu. The Cu layer thickness ratio decreases from 13.7 to 4.1 pct after roll bonding. The Cu/8011/1060 clads prepared at the rolling reduction rate of 47 pct have the best comprehensive mechanical performance with an ultimate tensile strength (UTS) of 135.7 MPa and elongation (EL) of 25.5 pct. Two different tensile fracture modes are observed for Cu/8011/1060 clads fabricated at different rolling reduction rates.

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 51674166) and the 111 Project (Grant No. B16032).

References

  1. 1.
    T. Liu, Q.D. Wang, Y.D. Sui, Q.G. Wang and W.J. Ding: Mater. Des. 2016, vol. 89, pp. 1137-46.CrossRefGoogle Scholar
  2. 2.
    N. Ahmed: J. Mech. Work. Technol. 1978, 2(1): 19-32.CrossRefGoogle Scholar
  3. 3.
    H. Amani and M. Soltanieh: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2524-34.CrossRefGoogle Scholar
  4. 4.
    R. Uscinowicz: Mater. Des. 2013, vol. 49, pp. 693-700.CrossRefGoogle Scholar
  5. 5.
    T.H. Lee, Y.J. Lee, K. Park, H.H. Nersisyan, H.G. Jeong and J.H. Lee: J. Mater. Process. Technol. 2013, vol. 213, pp. 487-94.CrossRefGoogle Scholar
  6. 6.
    G.P. Liu, Q.D. Wang, L. Zhang, B. Ye, H.Y. Jiang and W.J. Ding: Metall. Mater. Trans. A, 2018, vol. 49, pp. 661-72.CrossRefGoogle Scholar
  7. 7.
    H. Huang, Y. Dong, M. Yan and F. Du: Trans. of Nonferrous Met. Soc. China, 2017, vol. 27, pp. 1019-25.CrossRefGoogle Scholar
  8. 8.
    T. Haga, K. Takahashi, M. Ikawa and H. Watari: J. Mater. Process. Technol. 2003, vol. 140, pp. 610-5.CrossRefGoogle Scholar
  9. 9.
    M. Asemabadi and M. Sedighi, M: Mater. Sci. Eng. A, 2012, vol. 558, pp. 144-9.CrossRefGoogle Scholar
  10. 10.
    H. Li and J. Han: J. Univ. Sci. Technol. Beijing, 2006, vol. 13, pp. 532-7.CrossRefGoogle Scholar
  11. 11.
    A. Mamalis and A. Szalay: J. Mater. Process. Technol. 1998, vol. 83, pp. 48–53.CrossRefGoogle Scholar
  12. 12.
    G. Chen, J.T. Li, H.L. Yu, L.H. Su, G.M. Xu, J.S. Pan, T. You, G. Zhang, K.M. Sun and L.Z. He: Mater. Des. 2016, vol. 112, pp. 263-74.CrossRefGoogle Scholar
  13. 13.
    M. Hoseini-Athar and B. Tolaminejad: Met. Mater. Int. 2016, vol. 22, pp. 670-80.CrossRefGoogle Scholar
  14. 14.
    X.L. Ma, C.X. Huang, W.Z. Xu, H. Zhou, X.L. Wu and Y.T. Zhu: Scr. Mater. 2015, vol. 103, pp. 57-60.CrossRefGoogle Scholar
  15. 15.
    N. Bay: Met. Constr. 1986, vol. 18, pp. 369-72.Google Scholar
  16. 16.
    R. Jamaati and M. Toroghinejad: Mater. Des. 2010, vol. 31, pp. 4508-13.CrossRefGoogle Scholar
  17. 17.
    Antoine, D. Bernadette and H. Eric: Intermetallics, 2014, vol. 50, pp. 34-42.CrossRefGoogle Scholar
  18. 18.
    K.S. Lee, S.E. Lee, H.K. Sung, D.H. Lee, J.S. Kim, Y.W. Chang, S. Lee and Y.N. Kwon: Mater. Sci. Eng. A, 2013, vol. 583, pp. 177-81.CrossRefGoogle Scholar
  19. 19.
    A. Eraslan: Mech. Res. Commun. 2002, vol. 29, pp. 339-50.CrossRefGoogle Scholar
  20. 20.
    T. Wang, S. Li, Z. Ren, J. Han and Q. Huang: Mater. Lett. 2019, vol. 234, pp. 79-82.CrossRefGoogle Scholar
  21. 21.
    R. Hawkins and J. Wright: Int. J. Mech. Sci. 1972, vol. 14, pp. 875-78.CrossRefGoogle Scholar
  22. 22.
    M. Eizadjou, A.K. Talachi, H.D. Manesh, H.S. Shahabi and K. Janghorban: Compos. Sci. Technol. 2008, vol. 68, pp. 2003-9.CrossRefGoogle Scholar
  23. 23.
    X. Li, G. Zu and P. Wang: Mater. Sci. Eng. A, 2013, vol. 575, pp. 61-4.CrossRefGoogle Scholar
  24. 24.
    H. Gao, X. Liu, J. Qi, Z.R. Ai and L.Z. Liu: J. Mater. Process. Technol. 2018, vol. 251, pp. 1-11.CrossRefGoogle Scholar
  25. 25.
    H. Chang, M. Zheng, C. Xu, G.D. Fan, H.G. Brokmeier and K. Wu. Mater. Sci. Eng. A, 2012, vol. 543, pp. 249-56.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Guoping Liu
    • 1
    • 2
  • Qudong Wang
    • 1
    • 2
    Email author
  • Zhengping Shang
    • 3
  • Liugen Luo
    • 3
  • Bing Ye
    • 1
    • 2
  • Haiyan Jiang
    • 1
    • 2
  • Wenjiang Ding
    • 1
    • 2
  1. 1.National Engineering Research Center of Light Alloy Net Forming and Key State Laboratory of Metal Matrix Composites, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China
  2. 2.Shanghai Innovation Institute for MaterialsShanghaiP.R. China
  3. 3.Jiangsu Zhongse Composite Materials Co., Ltd.WuxiP.R. China

Personalised recommendations