Specific Features of Microstructural Evolution During Hot Rolling of the As-Cast Magnesium-Rich Aluminum Alloys with Added Transition Metal Elements

  • E. V. AryshenskiiEmail author
  • J. Hirsch
  • S. V. Konovalov
  • U. Prahl


This study addresses specific features of microstructural development during the rolling of the as-cast magnesium-rich aluminum alloys with added transition metal elements, such as Zr and Sc. For investigation purposes, three magnesium-rich aluminum alloys were chosen: 5182 without added Zr and Sc, 1565 ch with added Zr and 1570 with added Zr and Sc. Optical microscopy, X-ray texture analysis, electron microscopy, and electron backscattered diffraction methods were used in this study. This study demonstrates that two completely different patterns can be observed in the microstructure during deformation. Two zones with different subgrain sizes are formed when the alloy tends to recrystallize. Without recrystallization, the structure develops homogeneously. Recrystallization also has a significant effect on the texture formation. If recrystallization does not occur, a strong β-fiber texture is formed. However, this type of texture tends not to form during inter-deformation intervals when recrystallization occurs. Second-phase particles have the strongest effect on microstructural evolution during the hot deformation of the as-cast structure. Fine particles are capable of inhibiting recrystallization. Coarse particles initiate the PSN (particle-stimulated nucleation) mechanism and suppress the growth of the cubic texture component during recrystallization. An adequate combination of coarse and fine particles enables either better homogeneity of the structure distribution in the deformation center or better grain structure refinement.



This study is funded by a grant provided by the Russian Science Foundation, Project 18-79-10099.


  1. 1.
    V. V. Zakharov: Met. Sci. Heat Treat., 2017, vol. 59, pp. 67–71.CrossRefGoogle Scholar
  2. 2.
    J. Hirsch: Mater. Trans., 2011, vol. 52, pp. 818–24.CrossRefGoogle Scholar
  3. 3.
    M. A. Wells, I. V. Samarasekera, J. K. Brimacombe, E. B. Hawbolt, and D. J. Lloyd: Metall. Mater. Trans. B., 1998, vol. 29, pp. 611–20.CrossRefGoogle Scholar
  4. 4.
    E. V. Aryshenskii, V. Y. Aryshenskii, A. F. Grechnikova, and E. D. Beglov: Met. Sci. Heat Treat., 2014, vol. 56, pp. 347–52.CrossRefGoogle Scholar
  5. 5.
    J. Hirsch: Fundamentals of Aluminium Metallurgy. Woodhead Publishing, Sawston, 2011, pp. 719–46.CrossRefGoogle Scholar
  6. 6.
    M. A. Wells, I. V. Samarasekera, J. K. Brimacombe, E. B. Hawbolt, and D. J. Lloyd: Metall. Mater. Trans. B., 1998, vol. 29, pp. 709–19.CrossRefGoogle Scholar
  7. 7.
    H. E. Vatne, T. Furu, R. Ørsund, and E. Nes: Acta Mater., 1996, vol. 44, pp. 4463–73.CrossRefGoogle Scholar
  8. 8.
    O. Engler and H. E. Vatne: JOM, 1998, vol. 50, pp. 23–27.CrossRefGoogle Scholar
  9. 9.
    C. Schäfer, V. Mohles, and G. Gottstein: Applications of Texture Analysis. Wiley, New York 2008, pp. 537–45CrossRefGoogle Scholar
  10. 10.
    O. Dalland and E. Nes: Acta Mater., 1996, vol. 44, pp. 1389–411.CrossRefGoogle Scholar
  11. 11.
    O. Engler: Mater. Sci. Forum., 2007, vol. 550, pp. 23–34.CrossRefGoogle Scholar
  12. 12.
    E. Povoden-Karadeniz, P. Lang, K. I. Öksüz, W. Jun, S. Rafiezadeh, A. Falahati, E. Kozeschnik: Mater. Sci. Forum., 2013, vol. 765, pp. 476-80CrossRefGoogle Scholar
  13. 13.
    P. Lang, T. Weisz, M. R. Ahmadi, E. Povoden-Karadeniz, A. Falahati, & E. Kozeschnik: Adv. Mater. Res., 2014, vol. 922, pp. 406-411CrossRefGoogle Scholar
  14. 14.
    M. Piotr, R. Bureau, C. Poletti, C. Sommitsch, P. Warczok, and E. Kozeschnik. Key Eng. Mater., 2015, vol. 651-653. pp. 1319-24Google Scholar
  15. 15.
    F. J. Humphreys and M. Hatherly: Recrystallization and related annealing phenomena, Elsevier, New York, 2012Google Scholar
  16. 16.
    A. V. Andrianov, E. G. Kandalova, E. V. Aryshensky, and A. F. Grechnikova: Key Eng. Mater., 2016, vol. 684. pp. 398-405CrossRefGoogle Scholar
  17. 17.
    Sukhopar, Olga, and Günter Gottstein: Mater. Sci. Forum., 2012, vol. 715, pp. 455–60.CrossRefGoogle Scholar
  18. 18.
    O. Engler: Mater. Sci. Forum., 2003, vol. 426-432, pp. 3655–60.CrossRefGoogle Scholar
  19. 19.
    C. Schäfer, G. Pomana, V. Mohles, G. Gottstein, O. Engler, and J. Hirsch: Adv. Eng. Mater., 2010, vol. 12, pp. 131–40.CrossRefGoogle Scholar
  20. 20.
    J. Hirsch: Mater. Sci. Forum., 2005, vol. 495, pp. 1565–72.CrossRefGoogle Scholar
  21. 21.
    O. Engler, L. Löchte, and J. Hirsch: Acta Mater., 2007, vol. 55, pp. 5449–63.CrossRefGoogle Scholar
  22. 22.
    M. Crumbach, M. Goerdeler, and G. Gottstein: Acta Mater., 2006, vol. 54, pp. 3275–89.CrossRefGoogle Scholar
  23. 23.
    Gottstein, G., and V. Mohles.: In Proceedings of the 1st World Congress on Integrated Computational Materials Engineering (ICME), 2011, p. 9.Google Scholar
  24. 24.
    J. Hjelen, R. Ørsund, and E. Nes: Acta Metall. Mater., 1991, vol. 39, pp. 1377–404.CrossRefGoogle Scholar
  25. 25.
    V. G. Davydov, V. I. Elagin, V. V. Zakharov, and D. Rostoval: Met. Sci. Heat Treat., 1996, vol. 38, pp. 347–52.CrossRefGoogle Scholar
  26. 26.
    M. S. Kaiser, S. Datta, A. Roychowdhury, and M. K. Banerjee: Mater. Manuf. Processes., 2007, vol. 23, pp. 74–81.CrossRefGoogle Scholar
  27. 27.
    A. Patra, S. Ganguly, P. P. Chattopadhyay, and S. Datta: Multidiscip. Model. Mater. Struct., 2015, vol. 11, pp. 401–12.CrossRefGoogle Scholar
  28. 28.
    A. W. Yu, C. G. Yang, S. L. Wang, F. C. Liu, and Q. Zheng: Appl. Mech. Mater., 2014, vol. 508, pp. 16–21.CrossRefGoogle Scholar
  29. 29.
    F. Wang, D. Qiu, Z. L. Liu, J. A. Taylor, M. A. Easton, and M.X. Zhang: Acta Mater., 2013, vol. 61, pp. 5636–45.CrossRefGoogle Scholar
  30. 30.
    H.-y. Li, D.-w. Li, Z.-x. Zhu, B.-a. Chen, X. Chen, C.-l. Yang, H.-y. Zhang, and W. Kang: Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 3059–69.CrossRefGoogle Scholar
  31. 31.
    F. Wang, D. Qiu, Z.-l. Liu, J. Taylor, M. Easton, and M.-X. Zhang: Trans. Nonferr. Met. Soc. China, 2014, vol. 24, pp. 2034–40.CrossRefGoogle Scholar
  32. 32.
    F. Wang, Z. Liu, D. Qiu, J. A. Taylor, M. A. Easton, and M.-X. Zhang: Acta Mater., 2013, vol. 61, pp. 360–70.CrossRefGoogle Scholar
  33. 33.
    E. Nes, N. Ryum, and O. Hunderi: Acta Metall., 1985, vol. 33, pp. 11–22.CrossRefGoogle Scholar
  34. 34.
    O. Engler, Z. Liu, and K. Kuhnke: J. Alloys Compd. 2013, vol. 560, pp. 111–22.CrossRefGoogle Scholar
  35. 35.
    O. Engler and S. Miller-Jupp: J. Alloys Compd. 2016, vol. 689, pp. 998–1010.CrossRefGoogle Scholar
  36. 36.
    H. Zhang, D. S. Peng, L. B. Yang, and L. P. Meng: Trans. Nonferrous Met. Soc. China., 2001, vol. 11. pp. 13-17.Google Scholar
  37. 37.
    B. Forbord, H. Hallem, N. Ryum, and K. Marthinsen: Mat. Sci. Eng. A., 2004, vol. 387-389, pp. 936–39.CrossRefGoogle Scholar
  38. 38.
    J. Røyset, N. Ryum: Int. Mater. Rev. 2005. vol. 50, pp. 19–44CrossRefGoogle Scholar
  39. 39.
    Aryshenskii, E., Hirsch, J., Yashin, V., Sergei, K., & Kawalla, R. (2018). J. Mater. Eng. Perform., vol. 27, 6780-99.CrossRefGoogle Scholar
  40. 40.
    K. Sjølstad.: Deformation and softening behaviour of commercial AlMn-alloys: Experiments and modelling. PhD thesis, Norwegian, 2003.Google Scholar
  41. 41.
    H. E. Vatne and M. A. Wells: Can. Metall. Q. 2003, vol. 42, pp. 79–88.CrossRefGoogle Scholar
  42. 42.
    O. Engler, C. N. Tomé, and M.-Y. Huh: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2299–315.CrossRefGoogle Scholar
  43. 43.
    W. B. Hutchinson: Acta Metall.,, 1989, vol. 37, pp. 1047–56.CrossRefGoogle Scholar
  44. 44.
    O. Engler: Acta Mater., 1998, vol. 46, pp. 1555–68.CrossRefGoogle Scholar
  45. 45.
    Y. Filatov, V. Yelagin, and V. Zakharov: Mat. Sci. Eng. A., 2000, vol. 280, pp. 97–101.CrossRefGoogle Scholar
  46. 46.
    Engler, O., Hirsch, J., & Lücke, K. Acta Metall., 1989, vol. 37, pp. 2743–53.CrossRefGoogle Scholar
  47. 47.
    J. Hirsch, K. Lücke: Overview No. 76: Acta Metall., 1988, vol. 36. pp. 2863-82.Google Scholar
  48. 48.
    Hansen N., Jensen D. J. Metall. Mater. Trans. A., 1986, vol. 17. pp. 253-59.CrossRefGoogle Scholar
  49. 49.
    Randle, Valerie, and Olaf Engler. Introduction to texture analysis: macrotexture, microtexture and orientation mapping. CRC Press, Boca Raton, 2014.Google Scholar
  50. 50.
    J. Hirsch: Mater. Sci. Forum., 2003, vol. 426-432, pp. 185–94.CrossRefGoogle Scholar
  51. 51.
    M. Cabibbo, S. Spigarelli, and E. Evangelista: Metall. Mater. Trans. A, 2004, vol. 35, pp. 293–300.CrossRefGoogle Scholar
  52. 52.
    B. I. Elagin, V. V. Zakharov, and T. D. Rostova: Met. Sci. Heat Treat., 1993, vol. 35. pp 317–319CrossRefGoogle Scholar
  53. 53.
    R. W. Hyland: Metall Mater Trans A, 1992, vol. 23., pp. 1947-1955CrossRefGoogle Scholar
  54. 54.
    A. Norman, P. Prangnell, and R. McEwen: Acta Mater., 1998, vol. 46, pp. 5715–32.CrossRefGoogle Scholar
  55. 55.
    Vatne, H. E., Ørsund, R., Marthinsen, K., & Nes, E. Metall. Mater. Trans. A, 1996, vol 27, pp. 4133-44.CrossRefGoogle Scholar
  56. 56.
    Aryshenskii, E., Kawalla, R., & Hirsch, J. Steel Res. Int, 2017, vol. 88, pp. 1700053.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • E. V. Aryshenskii
    • 1
    • 2
    Email author
  • J. Hirsch
    • 1
    • 3
    • 4
  • S. V. Konovalov
    • 1
  • U. Prahl
    • 2
  1. 1.Samara State Aerospace University, Samara National Research UniversitySamaraRussia
  2. 2.TU Bergakademie FreibergInstitut für MetallformungFreibergGermany
  3. 3.Hydro Aluminium Rolled Products GmbH, Research and DevelopmentBonnGermany
  4. 4.Aluminium ConsultingKönigswinterGermany

Personalised recommendations