Metallurgical and Materials Transactions A

, Volume 50, Issue 12, pp 5767–5781 | Cite as

Microstructure and Mechanical Behavior of ODS Stainless Steel Fabricated Using Cryomilling

  • Chen Dai
  • Lilia Kurmanaeva
  • Chris Schade
  • Enrique LaverniaEmail author
  • Diran Apelian


Oxide-dispersion-strengthened (ODS) stainless steels have been developed as structural materials for applications at elevated temperatures. In this study, water-atomized 316L stainless steel powder was cryomilled with various types of nanosized-oxide reinforcements. Conventional sintering and field-assisted sintering techniques (FAST) were used to consolidate the cryomilled powder. Mechanical properties, both in tension and compression, were evaluated for consolidated samples: samples made of cryomilled powders, as well as samples made of a mixture of cryomilled and coarse-grained atomized powders. The bimodal structure that evolved from such mixtures effectively toughened the ultrastrong cryomilled material. Microstructural analysis was carried out to determine the efficacy of the cryomilled powder. Results from the cryomilling experiments showed that a minimum grain size could be reached within 12 hours of milling. Our results showed that dispersion of the oxide phases during cryomilling occurred exclusively through physical mechanisms, which was different from that previously reported for room-temperature ball milling. The spatial distribution of the oxide dispersoids was found to be dependent on the evolution of internal surfaces during milling and on the type of oxide particle used. Finally, the influence of reinforcement on the mechanical behavior of the cryomilled material was analyzed using oxide-dispersion-strengthening and load-transfer-based strengthening mechanisms.



This research project was supported by the Hoeganaes Corporation and the Materials Design Institute, funded by the LANL/UC Davis Education Research Collaboration, Los Alamos National Laboratory (LANS Subcontract No. 75 782-001-09).


  1. 1.
    [1] C. C. Chan: Proc. IEEE, 2007, vol. 95, pp. 704–718.CrossRefGoogle Scholar
  2. 2.
    [2] M. S. El-Genk and J.-M. Tournier: J. Nucl. Mater., 2005, vol. 340, pp. 93–112.CrossRefGoogle Scholar
  3. 3.
    [3] S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata, S. Hayashi, and S. Ohnuki: Mater. Sci. Eng. A, 2009, vol. 510–511, pp. 115–120.CrossRefGoogle Scholar
  4. 4.
    [4] T. Okuda and M. Fujiwara: J. Mater. Sci. Lett., 1995 vol. 14, pp. 1600–1603.CrossRefGoogle Scholar
  5. 5.
    [5] C. Hin and B. D. Wirth: J. Nucl. Mater., 2010, vol. 402, pp. 30–37.CrossRefGoogle Scholar
  6. 6.
    [6] J. R. Rieken, I. E. Anderson, M. J. Kramer, G. R. Odette, E. Stergar, and E. Haney: J. Nucl. Mater., 2012, vol. 428, pp. 65–75.CrossRefGoogle Scholar
  7. 7.
    [7] Y. Chen, K. Sridharan, T. R. Allen, and S. Ukai: J. Nucl. Mater., 2006, vol. 359, pp. 50–58.CrossRefGoogle Scholar
  8. 8.
    [8] E. J. Lavernia, B. Q. Han, and J. M. Schoenung: Mater. Sci. Eng. A, 2008, vol. 493, pp. 207–214.CrossRefGoogle Scholar
  9. 9.
    [9] F. A. Mohamed: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2157–2162.CrossRefGoogle Scholar
  10. 10.
    D. B. Witkin and E. J. Lavernia: Prog. Mater. Sci., 2006, vol. 51, pp. 1–60.CrossRefGoogle Scholar
  11. 11.
    [11] F. A. Mohamed and Y. Xun: 2003, Mater. Sci. Eng. A, vol. 354, pp. 133–139.CrossRefGoogle Scholar
  12. 12.
    [12] N. Yang, J. K. Yee, Z. Zhang, L. Kurmanaeva, P. Cappillino, V. Stavila, E. J. Lavernia, and C. San Marchi: Acta Mater., 2015, vol. 82, pp. 41–50.CrossRefGoogle Scholar
  13. 13.
    [13] J. H. Lee: Appl. Mech. Mater., 2011, vol. 87, pp. 243–248.CrossRefGoogle Scholar
  14. 14.
    [14] Z. Zhang and D. Chen: Scr. Mater., 2006, vol. 54, no. 7, pp. 1321–1326.CrossRefGoogle Scholar
  15. 15.
    [15] S. Noh, B. Choi, S. Kang, and T. Kim: Nuclear Engineering and Technology, 2014, vol. 46, pp. 857-862.CrossRefGoogle Scholar
  16. 16.
    [16] K. Lu, L. Lu, and S. Suresh: Science, 2009, vol. 324, pp. 349–352.CrossRefGoogle Scholar
  17. 17.
    [17] E. Arzt: Acta Mater., 1998, vol. 46, pp. 5611–5626.CrossRefGoogle Scholar
  18. 18.
    [18] R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzer, N. Hashimoto, E. A. Kenik, and K. Miyahara: J. Nucl. Mater., 2002, vol. 307–311, pp. 773–777.CrossRefGoogle Scholar
  19. 19.
    [19] R. L. Klueh, J. P. Shingledecker, R. W. Swindeman, and D. T. Hoelzer: J. Nucl. Mater., 2005, vol. 341, pp. 103–114.CrossRefGoogle Scholar
  20. 20.
    R. K. Desu, H. Nitin-Krishnamurthy, A. Balu, A. K. Gupta, and S. K. Singh: J. Mater. Res. Technol., 2015, vol. 5, pp. 1–8.Google Scholar
  21. 21.
    [21] Y. Hedberg, M. Norell, P. Linhardt, H. Bergqvist, and I. Odnevall Wallinder: Int. J. Electrochem. Sci., 2012, vol. 7, pp. 11655–11677.Google Scholar
  22. 22.
    [22] S. W. Nam: Mater. Sci. Eng. A, 2002, vol. 322, pp. 64–72.CrossRefGoogle Scholar
  23. 23.
    [23] C. Garion, B. Skoczeń, and S. Sgobba: Int. J. Plast., 2006, vol. 22, pp. 1234–1264.CrossRefGoogle Scholar
  24. 24.
    B. O. Han, E. J. Lavernia, Z. Lee, S. Nutt, and D. Witkin: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 957–965.CrossRefGoogle Scholar
  25. 25.
    [25] H. Yang, E. J. Lavernia, and J. M. Schoenung: Philos. Mag. Lett., 2015, vol. 95, pp. 177–186.CrossRefGoogle Scholar
  26. 26.
    [26] Y. Lin, B. Yao, Z. Zhang, Y. Li, Y. Sohn, J. M. Schoenung, and E. J. Lavernia: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4247–4257.CrossRefGoogle Scholar
  27. 27.
    T. Ungár and A. Borbély: Appl. Phys. Lett., 1996, vol. 69, pp. 3173.CrossRefGoogle Scholar
  28. 28.
    [28] C. Goujon, P. Goeuriot, P. Delcroix, and G. Le Caër: J. Alloys Compd., 2001, vol. 315, pp. 276–283.CrossRefGoogle Scholar
  29. 29.
    [29] C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.CrossRefGoogle Scholar
  30. 30.
    [30] H.-J. Fecht: Nanostructured Mater., 1995, vol. 6, pp. 33–42.CrossRefGoogle Scholar
  31. 31.
    [31] F. A. Mohamed: Acta Mater., 2003, vol. 51, pp. 4107–4119.CrossRefGoogle Scholar
  32. 32.
    [32] L. Hsiung, M. Fluss, S. Tumey, J. Kuntz, B. El-Dasher, M. Wall, B. Choi, A. Kimura, F. Willaime, and Y. Serruys: J. Nucl. Mater., 2011, vol. 409, pp. 72–79.CrossRefGoogle Scholar
  33. 33.
    [33] J. T. Busby, M. C. Hash, and G. S. Was: J. Nucl. Mater., 2005, vol. 336, pp. 267–278.CrossRefGoogle Scholar
  34. 34.
    AKSteel: Stainless Steel 316/316L Product Data Bulletin, 2013, pp. 2–4.Google Scholar
  35. 35.
    [35] S. Ahmed and F. R. Jones: J. Mater. Sci., 1990, vol. 25, pp. 4933–4942.CrossRefGoogle Scholar
  36. 36.
    [36] B. Avitzur: J. Eng. Ind., 1973, vol. 95, pp. 827-834.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Chen Dai
    • 1
  • Lilia Kurmanaeva
    • 1
  • Chris Schade
    • 2
  • Enrique Lavernia
    • 1
    • 3
    Email author
  • Diran Apelian
    • 4
  1. 1.Department of Chemical Engineering and Material ScienceUniversity of California, DavisDavisUSA
  2. 2.Hoeganaes CorporationCinnaminsonUSA
  3. 3.Department of Chemical Engineering and Material ScienceUniversity of California, IrvineIrvineUSA
  4. 4.Material Processing InstituteWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations