Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 12, pp 5561–5566 | Cite as

On the Enhanced Deformability of Brittle Intermetallics Through the Design of Heterogeneous Multi-layered Structure

  • Hao WuEmail author
  • Zhuangzhuang Liu
  • Haibo Hu
  • Qinggang Li
  • Jinkai Li
  • Junyan Wu
  • Zhi WangEmail author
Communication
  • 104 Downloads

Abstract

Industrial manufacturing, forming, and application of brittle materials such as Ti3Al intermetallic compounds are influenced by their poor plastic deformability. For evading such a dilemma, we propose a heterogeneous design strategy and fabricated macroscopically multi-layered composites with microscopically compositional gradients. In situ tension and in situ tracking of local strain evolution demonstrate that extremely brittle Ti3Al after being embedded into heterogeneous laminated composites can plastically deform at room temperature, even approaching 27.5 pct at 600 °C.

Notes

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51701081, 51872118), the Young-aged Talents Lifting Project from Shandong Association for Science & Technology (Grant No. 301-1505001, recoded by University of Jinan), the Shandong Provincial Natural Science Foundation, China (Grant Nos. ZR2017BEM001, ZR2018PEM008), and the Key Research and Development Program of Shandong Province (Grant No. 2019GGX104077).

Supplementary material

11661_2019_5477_MOESM1_ESM.doc (120 kb)
Supplementary material 1 (DOC 120 kb)

References

  1. 1.
    1. B. B. He, B. Hu, H. W. Yen, G. J. Cheng, Z. K. Wang, H. W. Luo and M. X. Huang, Science 2017, vol. 357, pp. 1029-1032.CrossRefGoogle Scholar
  2. 2.
    2. H. A. Lipsitt, D. Shechtman and R. E. Schafrik, Metall. Trans. A 1980, vol. 11A, pp. 1369-1375.CrossRefGoogle Scholar
  3. 3.
    3. I. A. Ovid’ko, R. Z. Valiev and Y. T. Zhu, Prog. Mater. Sci. 2018, vol. 94, pp. 462-540.CrossRefGoogle Scholar
  4. 4.
    4. E. Ma and T. Zhu, Mater. Today 2017, vol. 20, pp. 323-331.CrossRefGoogle Scholar
  5. 5.
    5. S. W. Wu, G. Wang, Q. Wang, Y. D. Jia, J. Yi, Q. J. Zhai, J. B. Liu, B. A. Sun, H. J. Chu, J. Shen, P. K. Liaw, C. T. Liu and T. Y. Zhang, Acta Mater. 2019, vol. 165, pp. 444-458.CrossRefGoogle Scholar
  6. 6.
    6. C. H. Ward, Int. Mater. Rev. 1993, vol. 38, pp. 79-101.CrossRefGoogle Scholar
  7. 7.
    7. F. Appel, H. Clemens and F. D. Fischer, Prog. Mater. Sci. 2016, vol. 81, pp. 55-124.CrossRefGoogle Scholar
  8. 8.
    8. T. H. Fang, W. L. Li, N. R. Tao and K. Lu, Science 2011, vol. 331, pp. 1587-1590.CrossRefGoogle Scholar
  9. 9.
    9. K. Lu, Science 2014, vol. 345, pp. 1455-1456.CrossRefGoogle Scholar
  10. 10.
    10. X. L. Wu, P. Jiang, L. Chen, F. P. Yuan and Y. T. Zhu, Proc. Natl. Acad. Sci. U. S. A. 2014, vol. 111, pp. 7197-7201.CrossRefGoogle Scholar
  11. 11.
    11. F. Liang, H. F. Tan, B. Zhang and G. P. Zhang, Scr. Mater. 2017, vol. 134, pp. 28-32.CrossRefGoogle Scholar
  12. 12.
    12. C. Ferraro, S. Meille, J. Réthoré, N. Ni, J. Chevalier and E. Saiz, Acta Mater. 2018, vol. 144, pp. 202-215.CrossRefGoogle Scholar
  13. 13.
    13. Z. Li, H. Wang, Q. Guo, Z. Li, D. B. Xiong, Y. Su, H. Gao, X. Li and D. Zhang, Nano Lett. 2018, vol. 18, pp. 6255-6264.CrossRefGoogle Scholar
  14. 14.
    H.W. Schreier, J.J. Orteu, and M.A. Sutton: Image Correlation for Shape, Motion and Deformation Measurements. Springer, 2009.Google Scholar
  15. 15.
    15. H. Wu, S. Zhang, H. Hu, J. Li, J. Wu, Q. Li and Z. Wang, Intermetallics 2019, vol. 110, p. 106483.CrossRefGoogle Scholar
  16. 16.
    16. X. P. Cui, G. H. Fan, L. Geng, Y. Wang, H. W. Zhang and H. X. Peng, Scr. Mater. 2012, vol. 66, pp. 276-279.Google Scholar
  17. 17.
    17. H. Wu, X. P. Cui, L. Geng, G. H. Fan, J. C. Pang and L. S. Wei, Intermetallics 2013, vol. 43, pp. 8-15.CrossRefGoogle Scholar
  18. 18.
    18. Z. Zeng, J. F. Nie, S. W. Xu, C. H. J. Davies and N. Birbilis, Nat. Commun. 2017, vol. 8, p. 972.CrossRefGoogle Scholar
  19. 19.
    19. S. Joseph, I. Bantounas, T. C. Lindley and D. Dye, Int. J. Plast. 2018, vol. 100, pp. 90-103.CrossRefGoogle Scholar
  20. 20.
    20. H. Wang, C. J. Boehlert, Q. D. Wang, D. D. Yin and W. J. Ding, Int. J. Plast. 2016, vol. 84, pp. 255-276.CrossRefGoogle Scholar
  21. 21.
    21. X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang and Y. Zhu, Proc. Natl. Acad. Sci. U. S. A. 2015, vol. 112, pp. 14501-14505.CrossRefGoogle Scholar
  22. 22.
    22. M. Yang, D. Yan, F. Yuan, P. Jiang, E. Ma and X. Wu, Proc. Natl. Acad. Sci. U. S. A. 2018, vol. 115, pp. 7224-7229.CrossRefGoogle Scholar
  23. 23.
    23. H. Wu, G. Fan, M. Huang, L. Geng, X. Cui, R. Chen and G. Peng, Compos. Struct. 2017, vol. 163, pp. 123-128.CrossRefGoogle Scholar
  24. 24.
    24. C. X. Huang, Y. F. Wang, X. L. Ma, S. Yin, H. W. Höppel, M. Göken, X. L. Wu, H. J. Gao and Y. T. Zhu, Mater. Today 2018, vol. 21, pp. 713-719.CrossRefGoogle Scholar
  25. 25.
    25. X. L. Ma, C. X. Huang, W. Z. Xu, H. Zhou, X. L. Wu and Y. T. Zhu, Scr. Mater. 2015, vol. 103, pp. 57-60.CrossRefGoogle Scholar
  26. 26.
    26. M. Huang, G. H. Fan, L. Geng, G. J. Cao, Y. Du, H. Wu, T. T. Zhang, H. J. Kang, T. M. Wang, G. H. Du and H. L. Xie, Sci. Rep. 2016, vol. 6, p. 38461.CrossRefGoogle Scholar
  27. 27.
    27. H. Wu, J. Leng, X. Teng, T. Su, Q. Li, J. Li, J. Wu, D. Xu and Y. Zhu, Mater. Des. 2019, vol. 164, p. 107559.CrossRefGoogle Scholar
  28. 28.
    28. K. Hazeli, J. Cuadra, F. Streller, C. M. Barr, M. L. Taheri, R. W. Carpick and A. Kontsos, Scr. Mater. 2015, vol. 100, pp. 9-12.CrossRefGoogle Scholar
  29. 29.
    29. R. Li, Q. Xie, Y. D. Wang, W. Liu, M. Wang, G. Wu, X. Li, M. Zhang, Z. Lu, C. Geng and T. Zhu, Proc. Natl. Acad. Sci. U. S. A. 2018, vol. 115, pp. 483-488.CrossRefGoogle Scholar
  30. 30.
    30. X. L. Wu, P. Jiang, L. Chen, J. F. Zhang, F. P. Yuan and Y. T. Zhu, Mater. Res. Lett. 2014, vol. 2, pp. 185-191.CrossRefGoogle Scholar
  31. 31.
    31. P. P. Rao and K. Tangri, Mater. Sci. Eng. A 1991, vol. 132, pp. 49-59.CrossRefGoogle Scholar
  32. 32.
    32. D. C. Pagan, M. Obstalecki, J.-S. Park and M. P. Miller, Acta Mater. 2018, vol. 147, pp. 133-148.CrossRefGoogle Scholar
  33. 33.
    33. J. G. Kim, S. M. Baek, H. H. Lee, K.-G. Chin, S. Lee and H. S. Kim, Acta Mater. 2018, vol. 147, pp. 304-312.CrossRefGoogle Scholar
  34. 34.
    34. Y. Bu, Z. Li, J. Liu, H. Wang, D. Raabe and W. Yang, Phys. Rev. Lett. 2019, vol. 122, p. 075502.CrossRefGoogle Scholar
  35. 35.
    35. J. Li, G. J. Weng, S. Chen and X. Wu, Int. J. Plast. 2017, vol. 88, pp. 89-107.CrossRefGoogle Scholar
  36. 36.
    36. H. Zhang, J. Liu, D. Sui, Z. Cui and M. W. Fu, Int. J. Plast. 2018, vol. 100, pp. 69-89.CrossRefGoogle Scholar
  37. 37.
    37. C. W. Shao, P. Zhang, Y. K. Zhu, Z. J. Zhang, Y. Z. Tian and Z. F. Zhang, Acta Mater. 2018, vol. 145, pp. 413-428.CrossRefGoogle Scholar
  38. 38.
    Z. Cheng, H. Zhou, Q. Lu, H. Gao, and L. Lu: Science 2018, vol. 362, p. eaau1925.Google Scholar
  39. 39.
    39. J. S. Weaver, N. Li, N. A. Mara, D. R. Jones, H. Cho, C. A. Bronkhorst, S. J. Fensin and G. T. Gray, Acta Mater. 2018, vol. 156, pp. 356-368.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of JinanJinanP.R. China

Personalised recommendations