Effects of Hot Spinning and Heat Treatment on the Microstructure, Texture, and Mechanical Properties of A356 Wheel Hubs

  • Changqing HuangEmail author
  • Jiaxing Liu


The effects of hot spinning and heat treatment on the microstructure, texture, and mechanical properties of A356 wheel hubs were studied. The results of the microstructure investigation show that the as-cast microstructure was broken and elongated after spinning, but the microstructure in the inner layer was not substantially streamlined. The results obtained for the eutectic Si particles reveal that they were partially cracked under the action of the spinning stress, resulting in a slight decrease in size. The spheroidization effect of heat treatment on the eutectic Si particles was significant. The results of texture research show that the original as-cast texture disappeared after spinning, and the subsequent heat treatment had an influence on the texture transformation. The distribution of the misorientation angle changed after hot spinning and heat treatment. The hardness results show that the hardness decreased slightly by spinning but increased with the subsequent heat treatment. Both spinning and heat treatment could improve the tensile strength, but the tensile strength of the inner layer was lower than that of the outer layer. The effect of the developed textures on the yield strength was explored by a comparison study using the Schmid Factor.



The authors appreciate financial support from the Natural Science Foundation of China under Grant 51275533, the State Key Laboratory of High-Performance Complex Manufacturing (Contract No. zzyjkt2013-10B), Central South University, China.


  1. 1.
    1.W. M. Jiang, Z. T. Fan, D. J. Liu, D. F. Liao, X. P. Dong and X. M. Zong: Mater. Sci. Eng. A, 2013, vol. 560, pp. 396-403.CrossRefGoogle Scholar
  2. 2.
    2.B. Milkereit, H. Frock, C. Schick and O. Kessler: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 2025-2033.CrossRefGoogle Scholar
  3. 3.
    3.Y. J. Zhang, N. H. Ma, Y. K. Le, S. C. Li and H. W. Wang: Mater. Lett., 2005, vol. 59, pp. 2174-2177.CrossRefGoogle Scholar
  4. 4.
    4.S.C. Wang, C. Cai, K.H. Zheng, W.J. Qi: China Foundry, 2013, vol. 10, pp: 299-303.Google Scholar
  5. 5.
    5.M. J. Roy and D. M. Maijer: J. Mater. Process. Technol., 2015, vol. 226, pp. 188-204.CrossRefGoogle Scholar
  6. 6.
    6.X. Y. Wu, H. R. Zhang, H. L. Chen, L. N. Jia and H. Zhang: China Foundry, 2017, vol. 14, pp. 138-44.CrossRefGoogle Scholar
  7. 7.
    7.Y. C. Cheng, C. K. Lin, A. H. Tan, S. Y. Hsu and S. L. Lee: J. Mater. Eng. Perform., 2012, vol. 21, pp. 1873-78.CrossRefGoogle Scholar
  8. 8.
    8.W. M. Zhao, X. F. Jia, Z. F. Wang, Z. G. Yin and G. Y. Xiong: Adv. Mater. Res., 2011,Vols. 189-193, pp. 4014-17.CrossRefGoogle Scholar
  9. 9.
    9.Y. C. Cheng, C. K. Lin, A. H. Tan, J. C. Lin and S. L. Lee: Mater. Manuf. Process., 2010, vol. 25, pp. 689-95.CrossRefGoogle Scholar
  10. 10.
    10.B. Dang, Y. B. Li, F. Liu, Q. Zuo and M. C. Liu: Mater. Des., 2014, vol. 57, pp. 73-78.CrossRefGoogle Scholar
  11. 11.
    11.R. Gupta, A. Sharma, U. Pandel and L. Ratke: Int. J. Cast. Metals Res., 2017, vol. 30, pp. 283-92.CrossRefGoogle Scholar
  12. 12.
    12.M. Zhu, Z. Y. Jian, G. C. Yang and Y. H. Zhou, Mater. Des., 2012, vol. 36, pp. 243-49.CrossRefGoogle Scholar
  13. 13.
    13.V. H. Carneiro, H. Puga and J. Meireles: Mater. Sci. Eng. A, 2018, vol. 729, pp. 1-8.CrossRefGoogle Scholar
  14. 14.
    14.J. H. Peng, X. L. Tang, J. T. He and D. Y. Xu: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 1950-56.CrossRefGoogle Scholar
  15. 15.
    15.M. Howeyze, A. R. Eivani, H. Arabi and H. R. Jafarian: Mater. Sci. Eng. A, 2018, vol. 732, pp. 120-28.CrossRefGoogle Scholar
  16. 16.
    Tajir, A., Y. Uematsu, T. Kakiuchi, Y. Tozaki, Y. Suzuki and A. Afrinaldi: Int. J. Fatigue, 2015, vol. 80, pp. 192-202.CrossRefGoogle Scholar
  17. 17.
    17.S. S Zhao, X. P. Lin, Y. Dong, Y. Niu, D. Xu and H. Sun: Mater. Sci. Eng. A, 2018, vol. 729, pp. 300-09.CrossRefGoogle Scholar
  18. 18.
    18.K. Abib, J. A. M. Balanos, B. Alili and D. Bradai: Mater. Charact., 2016, vol. 112, pp. 252-58.CrossRefGoogle Scholar
  19. 19.
    19.D. B. Shan, G. P. Yang and W. C. Xu: J. Mater. Process. Technol., 2009, vol. 209, pp. 5713-19.CrossRefGoogle Scholar
  20. 20.
    20.M. G. Mueller, M. Fornabaio, G. Zagar and A. Mortensen: Acta Mater., 2016, vol. 105, pp. 165-75.CrossRefGoogle Scholar
  21. 21.
    21.U. Patakham and C. Limmaneevichitr: J. Alloys Compd., 2014, vol. 616, pp. 198-207.CrossRefGoogle Scholar
  22. 22.
    22.L. Yang, Y. B. Li, B. Dang, H. B. Lu and F. Liu: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 3189-96.CrossRefGoogle Scholar
  23. 23.
    23.E. Ogris, A. Wahlen, H. Luchinger and P. J. Uggowitzer: J. Light Met., 2002, vol. 2, pp. 263-269.CrossRefGoogle Scholar
  24. 24.
    24.Y. Birol: Mater. Sci. Eng. A., 2013, vol. 559, pp. 394-400.CrossRefGoogle Scholar
  25. 25.
    25.M. S. Bhaskar and M. K. Surappa: Trans. Indian Inst. Met., 2019, vol. 72, pp. 849-57.CrossRefGoogle Scholar
  26. 26.
    26.W. C. Liu, C. S. Man, D. Raabe and J. G. Morris: Scr. Mater., 2005, vol. 53, pp. 1273-77.CrossRefGoogle Scholar
  27. 27.
    27.Y. C. Lin, X. Y. Wu, X. M. Chen, J. Chen, D. X. Wen, J. L. Zhang and L. T. Li: J. Alloys Compd., 2015, vol. 640, pp. 101-13.CrossRefGoogle Scholar
  28. 28.
    28.Y. Birol: J. Alloys Compd., 2009, vol. 484, pp. 164-67.CrossRefGoogle Scholar
  29. 29.
    29.J. B. Yu, Z. M. Ren, W. L. Ren, K. Deng and Y. B. Zhong: Acta Metall. Sin.-Engl. Lett., 2009, vol. 22, pp. 191-96.CrossRefGoogle Scholar
  30. 30.
    30.G. Sha, H. Moller, W. E. Stumpf, J. H. Xia, G. Govender and S. P. Ringer: Acta Mater., 2012, vol. 60, pp. 692-701.CrossRefGoogle Scholar
  31. 31.
    31.K. Buchanan, K. Colas, J. Ribis, A. Lopea, J. Garnier: Acta Mater., 2017, vol. 132, pp. 209-21.CrossRefGoogle Scholar
  32. 32.
    32.Y. B. Chun, S. H. Ahn, D. H. Shin and S. K. Hwang: Mater. Sci. Eng. A., 2009, vol. 508, pp. 253-58.CrossRefGoogle Scholar
  33. 33.
    33.P. Luo, D. T. McDonald, S. M. Zhu, S. Palanisamy, M. S. Dargusch and K. Xia: Mater. Sci. Eng. A., 2012, vol. 538, pp. 252-58.CrossRefGoogle Scholar
  34. 34.
    34.O. R. Myhr, O. S. Hopperstad and T. Borvik: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3592-3609.CrossRefGoogle Scholar
  35. 35.
    35.S. Birosca, F. Di Gioacchino, S. Stekovic and M. Hardy: Acta Mater., 2014, vol. 74, pp. 110-24.CrossRefGoogle Scholar
  36. 36.
    36.S. M. Fatemi, A. Zarei-Hanzaki and J. M. Cabrera: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2563-73.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Mechanical and Electrical Engineering, State Key Laboratory of High-performance Complicated Manufacturing and Light Alloy Research InstituteCentral South UniversityChangshaChina
  2. 2.School of Mechanical and Electrical Engineering and State Key Laboratory of High-performance Complicated ManufacturingCentral South UniversityChangshaChina

Personalised recommendations