The Influence of Microstructural Characteristics on Austenite Formation Kinetics in a Plain Carbon Steel

  • M. S. Mohsenzadeh
  • M. MazinaniEmail author


Since the condition of austenite phase formed during intercritical annealing treatment has a crucial impact on the final microstructure and mechanical properties of dual-phase (DP) steels, detailed investigations with regard to austenite formation in this heat treatment process need to be done. In this study, the effects of different microstructural features, such as ferrite grain size, cementite particle size, and pearlite morphology, on austenite formation in a plain carbon steel (0.165 wt pct C, 1.15 wt pct Mn) during isothermal intercritical annealing treatment have been evaluated. The Johnson–Mehl–Avrami–Kolmogorov (JMAK) model was used for modeling the kinetics of austenite formation in this steel during isothermal annealing treatment. The volume fraction of austenite (martensite at room temperature) at different intercritical annealing holding times was calculated by this model using the corresponding results obtained from the experiments. It was found that the starting steel microstructure from which austenite phase is formed has a significant effect on both austenite nucleation and growth. The effect of microstructural parameters on the kinetics of austenite formation in ferrite-cementite steel microstructures was more significant than that in ferrite-pearlite (F-P) steels. An increase in the average cementite particle size or ferrite grain size in ferrite-cementite steels caused a significant decrease in the rate of austenite formation. In F-P steels, on the other hand, pearlite morphology exhibited a small effect on the kinetics of austenite formation while ferrite grain size had a pronounced effect on the rate of austenite formation at the later stage of intercritical annealing, i.e., ferrite to austenite transformation stage.



  1. 1.
    Hamid Azizi-Alizamini, Matthias Militzer, and Warren J Poole: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1544–57.CrossRefGoogle Scholar
  2. 2.
    C.I. Garcia and A.J. DeArdo: Metall. Trans. A, 1981, vol. 12A, pp. 521–30.CrossRefGoogle Scholar
  3. 3.
    J. Huang, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3363–75.CrossRefGoogle Scholar
  4. 4.
    Martín SD, de Cock T, García-Junceda A, Caballero FG, Capdevila C, de Andrés CG (2008) Mater. Sci. Technol. 24:266–272.CrossRefGoogle Scholar
  5. 5.
    Navara E, Bengtsson B, Easterling KE (1986) Mater. Sci. Technol. 2:1196–1201.CrossRefGoogle Scholar
  6. 6.
    J. Rudnizki, B. Böttger, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2516–25.CrossRefGoogle Scholar
  7. 7.
    G.R. Speich, V.A. Demarest, and R.L. Miller: Metall. Trans. A, 1981, vol. 12A, pp. 1419–28.CrossRefGoogle Scholar
  8. 8.
    D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1985, vol. 16A, pp. 1385–92.CrossRefGoogle Scholar
  9. 9.
    R.R. Mohanty, O.A. Girina, and N.M. Fonstein: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3680–90.CrossRefGoogle Scholar
  10. 10.
    CastroCerda FM, Sabirov I, Goulas C, Sietsma J, Monsalve A, Petrov RH (2017) Mater. Design 116:448–60.CrossRefGoogle Scholar
  11. 11.
    M. Kulakov, W.J. Poole, and M Militzer: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3564–76.CrossRefGoogle Scholar
  12. 12.
    M. Enomoto, S. Li, Z.N. Yang, C. Zhang, and Z.G. Yang: Calphad, 2018, vol. 61, pp. 116–25.CrossRefGoogle Scholar
  13. 13.
    Abdelahad Chbihi, David Barbier, Lionel Germain, Alain Hazotte, and Mohamed Gouné: J. Mater. Sci., 2014, vol. 49, pp. 3608–21.CrossRefGoogle Scholar
  14. 14.
    Qingquan Lai, Mohamed Gouné, Astrid Perlade, Thomas Pardoen, Pascal Jacques, Olivier Bouaziz, and Yves Bréchet: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3375–86.CrossRefGoogle Scholar
  15. 15.
    Judd RR, Paxton HW (1968) Trans TMS-AIME 242:206.Google Scholar
  16. 16.
    Göran Molinder: Acta Metall., 1956, vol. 4, pp. 565–71.CrossRefGoogle Scholar
  17. 17.
    Yi JJ, Kim IS, Choi HS (1985) Metall. Trans. A, 16A:1237–1245.CrossRefGoogle Scholar
  18. 18.
    Mohsenzadeh MS, Mazinani M (2016) Mater. Sci. Eng.: A 673:193–203.CrossRefGoogle Scholar
  19. 19.
    Mohsenzadeh MS, Mazinani M (2017) Mater. Sci. Eng.: A, 702:113–24.CrossRefGoogle Scholar
  20. 20.
    D.A. Porter, K.E. Easterling, and M. Sherif: Phase Transformations in Metals and Alloys, 3rd ed., (Revised Reprint), CRC Press, Boca Raton, 2009.Google Scholar
  21. 21.
    A. Baldan: J. Mater. Sci., 2002, vol. 37, pp. 2171–2202.CrossRefGoogle Scholar
  22. 22.
    V.I. Savran, Y. Van Leeuwen, D.N. Hanlon, C. Kwakernaak, W.G. Sloof, and J. Sietsma: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 946–55.CrossRefGoogle Scholar
  23. 23.
    Melvin Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.CrossRefGoogle Scholar
  24. 24.
    William A Johnson and Robert F Mehl: Trans. AIME, 1939, vol. 135, pp. 396–415.Google Scholar
  25. 25.
    Kolmogorov AN (1937) Bull. Acad. Sci. USSR, Math. Ser., 1:355–59.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials and Metallurgical EngineeringUniversity of GonabadGonabadIran
  2. 2.Department of Materials and Metallurgical Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations