Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 12, pp 5945–5956 | Cite as

A Formation Map of Iron-Containing Intermetallic Phases in Recycled Cast Aluminum Alloys

  • E. Cinkilic
  • C. D. Ridgeway
  • X. Yan
  • A. A. LuoEmail author
Article
  • 98 Downloads

Abstract

The cooling rate-dependent modification effect of Mn on the formation of Fe-containing intermetallic phases during solidification of Al-Si-Mg secondary cast aluminum alloys [containing 0.5 to 1 pct Fe (All compositions are in wt pct unless otherwise stated.)] was investigated by CALculation of PHAse Diagrams (CALPHAD) modeling and solidification experiments. The critical Mn concentration required to prevent the formation of detrimental β-Al5FeSi was found to be dependent on both the alloy composition (particularly the Fe/Mn ratio) and the cooling rate. A map of Fe/Mn ratio vs cooling rate was created, to summarize the metallurgical conditions of Fe-rich intermetallic phase formation. By understanding such formation conditions, the microstructure of aluminum castings can be controlled to create low-cost secondary alloys with high Fe content.

Notes

Acknowledgments

The authors would like to acknowledge the National Science Foundation for supporting this work (Award CMMI-1432688). Dr. Yeou-Li Chu and Mr. Patrick Cheng of Ryobi Die Casting are also acknowledged for helpful discussions.

References

  1. 1.
    A.I. Taub and A.A. Luo: MRS Bull., 2015, vol. 40, pp. 1045–54.CrossRefGoogle Scholar
  2. 2.
    J.G. Kaufman and E.L. Rooy: Aluminium Alloy Castings: Properties, Processes, and Applications, ASM International, Cleveland 2004.Google Scholar
  3. 3.
    M.E. Schlesinger: Aluminum Recycling, 2nd edn., CRC Press, Boca Raton, FL, 2013.CrossRefGoogle Scholar
  4. 4.
    W.J. Joost: JOM, 2012, vol. 64, pp. 1032–8.CrossRefGoogle Scholar
  5. 5.
    G. Gaustad, E. Olivetti, and R. Kirchain: Resour. Conserv. Recycl., 2012, vol. 58, pp. 79–87.CrossRefGoogle Scholar
  6. 6.
    K. Nakajima, O. Takeda, T. Miki, K. Matsubae, S. Nakamura, and T. Nagasaka: Environ. Sci. Technol., 2010, vol. 44, pp. 5594–600.CrossRefGoogle Scholar
  7. 7.
    A. Couture: AFS Int. Cast Met. J., 1981, vol. 6, pp. 9–17.Google Scholar
  8. 8.
    P.N. Crepeau: Trans. Am. Foundrymen’s Soc., 1995, vol. 103, pp. 361–6.Google Scholar
  9. 9.
    J.A. Taylor: Procedia Mater. Sci., 2012, vol. 1, pp. 19–33.CrossRefGoogle Scholar
  10. 10.
    S. Terzi, J.A. Taylor, Y.H. Cho, L. Salvo, M. Suéry, E. Boller, and A.K. Dahle: Acta Mater., 2010, vol. 58, pp. 5370–80.CrossRefGoogle Scholar
  11. 11.
    C.M. Dinnis, J.A. Taylor, and A.K. Dahle: Scr. Mater., 2005, vol. 53, pp. 955–8.CrossRefGoogle Scholar
  12. 12.
    C. Puncreobutr, A.B. Phillion, J.L. Fife, P. Rockett, A.P. Horsfield, and P.D. Lee: Acta Mater., 2014, vol. 79, pp. 292–303.CrossRefGoogle Scholar
  13. 13.
    S. Seifeddine, S. Johansson, and I.L. Svensson: Mater. Sci. Eng. A, 2008, vol. 490, pp. 385–90.CrossRefGoogle Scholar
  14. 14.
    J.Y. Hwang, H.W. Doty, and M.J. Kaufman: Mater. Sci. Eng. A, 2008, vol. 488, pp. 496–504.CrossRefGoogle Scholar
  15. 15.
    D. Bösch, S. Pogatscher, M. Hummel, W. Fragner, P. Uggowitzer, M. Göken, and H. Höppel: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1035–45.CrossRefGoogle Scholar
  16. 16.
    A. Gorny, J. Manickaraj, Z. Cai, and S. Shankar: J. Alloys Compd., 2013, vol. 577, pp. 103–24.CrossRefGoogle Scholar
  17. 17.
    Y. Awano and Y. Shimizu: AFS Trans., 1990, vol. 98, pp. 889–95.Google Scholar
  18. 18.
    M. V Kral: Mater. Lett., 2005, vol. 59, pp. 2271–6.CrossRefGoogle Scholar
  19. 19.
    L.A. Narayanan, F.H. Samuel, and J.E. Gruzleski: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1761–73.CrossRefGoogle Scholar
  20. 20.
    C.M. Dinnis, J.A. Taylor, and A.K. Dahle: Metall. Mater. Trans. A, 2006, vol. 37, pp. 3283–91.CrossRefGoogle Scholar
  21. 21.
    S.G. Shabestari: Mater. Sci. Eng. A, 2004, vol. 383, pp. 289–98.CrossRefGoogle Scholar
  22. 22.
    K. Liu, X. Cao, and X.G. Chen: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1231–40.CrossRefGoogle Scholar
  23. 23.
    S. Ji, W. Yang, F. Gao, D. Watson, and Z. Fan: Mater. Sci. Eng. A, 2013, vol. 564, pp. 130–9.CrossRefGoogle Scholar
  24. 24.
    R. Schmid-Fetzer and F. Zhang: Calphad, 2018, vol. 61, pp. 246–63.CrossRefGoogle Scholar
  25. 25.
    X. Cao and J. Campbell: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1425–35.CrossRefGoogle Scholar
  26. 26.
    N. Isono, P. Smith, D. Turnbull, and M.J. Aziz: Metall. Mater. Trans. A, 1996, vol. 27, pp. 725–30.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • E. Cinkilic
    • 1
  • C. D. Ridgeway
    • 1
  • X. Yan
    • 2
  • A. A. Luo
    • 1
    • 3
    Email author
  1. 1.Department of Materials Science & EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Alcoa Technical CenterNew KensingtonUSA
  3. 3.Department of Integrated Systems EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations