Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 12, pp 5656–5669 | Cite as

Influence of Composition on Nanoindentation Response of Ni-Zr Alloy Thin Films

  • Bibhu Prasad SahuEmail author
  • Amlan Dutta
  • Rahul Mitra
Article
  • 104 Downloads

Abstract

Variation in composition of an alloy thin film can alter its microstructure, which provides control over its nanomechanical behavior. To explore this idea, we fabricate thin films of Ni-Zr binary alloys with three different compositions and degrees of crystallinity. At low Zr-content, the microstructure is nanocrystalline, which becomes a mixture of amorphous and nanocrystalline phases at intermediate Zr-content. Further, the increase in Zr-content yields a predominantly amorphous film. Nanoindentations of the films reveal negative strain rate sensitivities over the investigated range of composition, although the effect becomes more pronounced with an increase in the Zr-content. Furthermore, the experiments render a closer view of the nanoindentation creep deformation of these Ni-Zr thin films. In particular, we have examined the influence of loading strain rate and composition on the creep compliance and retardation spectra, which provide valuable insight into the timescales associated with the time-dependent relaxation mechanisms. While the decrease in crystallinity mitigates the creep resistance, an increase in the loading strain rate is found to give rise to fast relaxation mechanisms corresponding to relatively smaller timescales. This study also introduces and highlights the prospects of analyzing the instantaneous strain rate sensitivity measured during the nanoindentation creep, which shows temporal features qualitatively analogous to that of the retardation spectra.

Notes

Acknowledgments

The authors thank Mr. Rajiv Kundu, Mr. Tapas Paul, and Mr. Santu Mudliyar of the Central Research Facility, Indian Institute of Technology, Kharagpur for the technical assistance with various experimental studies.

References

  1. 1.
    D. Prasanth, K.P. Sibin, and H.C. Barshilia: Thin Solid Films, 2019, vol. 673, pp. 78–85.Google Scholar
  2. 2.
    N.S. Babu and M. AbdulKhadar: Appl. Surf. Sci., 2019, vol. 474, pp. 34–41.Google Scholar
  3. 3.
    O. Crisan, F. Vasiliu, A.D. Crisan, I. Mercioniu, G. Schinteie, and A. Leca: Materials Characterization, 2019, vol. 152, pp. 245–52.Google Scholar
  4. 4.
    X.D. Zheng: Vacuum, 2019, vol. 165, pp. 46–50.Google Scholar
  5. 5.
    L. Moraga, C. Arenas, R. Henriquez, S. Bravo, and B. Solis: Phys. B: Condensed Matter, 2016, vol. 499, pp. 17–23.Google Scholar
  6. 6.
    R. Xu, Y. Ji, R. Bouchilaoun, F. Qian, M. Li, X. Zhang, R. Tang, R. Zhao, S. Misra, H. Wang, W. Li, C. Kan, D. Shi, J. Fan, and H. Yang: Ceram. Int., 2019, vol. 45, pp. 11304–8.Google Scholar
  7. 7.
    O. Crisan, F. Vasiliu, A.D. Crisan, I. Mercioniu, G. Schinteie, and A. Leca: Mater. Charact., 2019, vol. 152, pp. 245–52.Google Scholar
  8. 8.
    M. Apreutesei, P. Steyer, L. Joly-Pottuz, A. Billard, J. Qiao, S. Cardinal, F. Sanchette, J.M. Pelletier, and C. Esnouf: Thin Solid Films, 2014, vol. 561, pp. 53–9.Google Scholar
  9. 9.
    J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, and C. Rullyani: Thin Solid Films, 2012, vol. 520, pp. 5097–122.Google Scholar
  10. 10.
    T. Oellers, R. Raghavan, J. Chakraborty, C. Kirchlechner, A. Kostka, C.H. Liebscher, G. Dehm, and A. Ludwig: Thin Solid Films, 2018, vol. 645, pp. 193–202.Google Scholar
  11. 11.
    Z. Hou, P. Zhang, K. Wu, Y. Wang, G. Liu, G. Zhang, and J. Sun: Int. J. Refract. Met. Hard Mater., 2019, vol. 82, pp. 7–14.Google Scholar
  12. 12.
    W. Blum and P. Eisenlohr: J. Mater. Sci. Tech., 2017, vol. 33, pp. 718–22.Google Scholar
  13. 13.
    C. He, L. Xie, J. Zhang, G. Ma, Z. Du, J. Wang, and D. Zhao: Surf. Coat. Technol., 2017, vol. 320, pp. 472–7.Google Scholar
  14. 14.
    V.S. Saji: Materialia, 2018, vol. 3, pp. 1–11.Google Scholar
  15. 15.
    G. Shanker, P. Prathap, K.M.K. Srivatsa, and P. Singh: Curr. Appl. Phys., 2019, vol. 19, pp. 697–703.Google Scholar
  16. 16.
    Y.G. Yushkov, E.M. Oks, A. V Tyunkov, and D.B. Zolotukhin: Ceram. Int., 2019, vol. 45, pp. 9782–7.Google Scholar
  17. 17.
    S. Singh, S. Chang, C.S. Kaira, J.K. Baldwin, N. Mara, and N. Chawla: Mater. Des., 2019, vol. 168, p. 107670.Google Scholar
  18. 18.
    O. V Sobol, S.N. Dub, A.D. Pogrebnjak, R.P. Mygushchenko, A.A. Postelnyk, A. V Zvyagolsky, and G.N. Tolmachova: Thin Solid Films, 2018, vol. 662, pp. 137–44.Google Scholar
  19. 19.
    B.P. Sahu and R. Mitra: MRS Advances, 2017, vol. 2, pp. 1441–8.Google Scholar
  20. 20.
    Z. Qi, Z. Wu, D. Zhang, B. Wei, J. Wang, and Z. Wang: Vaccum, 2017, vol. 145, pp. 136–43.Google Scholar
  21. 21.
    A. Büttner, A. Probst, F. Emmerich, C. Damm, B. Rellinghaus, T. Döhring, and M. Stollenwerk: Thin Solid Films, 2018, vol. 662, pp. 41–6.Google Scholar
  22. 22.
    M. Ghidelli, S. Gravier, J.J. Blandin, P. Djemia, F. Mompiou, G. Abadias, J.P. Raskin, and T. Pardoen: Acta Mater., 2015, vol. 90, pp. 232–41.Google Scholar
  23. 23.
    T. Oellers, R. Raghavan, J. Chakraborty, C. Kirchlechner, G. Dehm, A. Ludwig, A. Kostka, and C.H. Liebscher: Thin Solid Films, 2018, vol. 645, pp. 193–202.Google Scholar
  24. 24.
    J.T. Zhao, J.Y. Zhang, H.Z. Yuan, K. Wu, G. Liu, and J. Sun: Scripta Mater., 2018, vol. 152, pp. 146–9.Google Scholar
  25. 25.
    P. Zeman, M. Zitek, S. Zuzjakova, and R. Cerstvy: J. Alloys Compd., 2017, vol. 696, pp. 1298–306.Google Scholar
  26. 26.
    Y.Q. Wang, J.Y. Zhang, X.Q. Liang, K. Wu, G. Liu, and J. Sun: Acta Mater., 2015, vol. 95, pp. 132–44.Google Scholar
  27. 27.
    F. Xue, P. Huang, M.B. Liu, K.W. Xu, F. Wang, and T.J. Lu: Mater. Sci. Eng. A, 2017, vol. 684, pp. 84–9.Google Scholar
  28. 28.
    F.X. Liu, Y.F. Gao, and P.K. Liaw: Metall. Mater. Trans. A,  https://doi.org/10.1007/s11661-007-9399-8.CrossRefGoogle Scholar
  29. 29.
    B.P. Sahu, A. Dutta, and R. Mitra: J. Alloys Compd., 2019, vol. 784, pp. 488–99.Google Scholar
  30. 30.
    J.T. Zhao, J.Y. Zhang, L.F. Cao, Y.Q. Wang, P. Zhang, K. Wu, G. Liu, and J. Sun: Acta Mater., 2017, vol. 132, pp. 550–64.Google Scholar
  31. 31.
    T. Guo, P. Huang, K.W. Xu, F. Wang, and T.J. Lu: Mater. Sci. Eng. A, 2016, vol. 676, pp. 501–5.Google Scholar
  32. 32.
    N. Kaur and D. Kaur: Surf. Coat. Technol., 2014, vol. 260, pp. 260–5.Google Scholar
  33. 33.
    Y. Ma, G.J. Peng, Y.H. Feng, and T.H. Zhang: J. Non-Cryst. Solids, 2017, vol. 465, pp. 8–16.Google Scholar
  34. 34.
    J. Hu, G. Sun, X. Zhang, G. Wang, Z. Jiang, S. Han, J. Zhang, and J. Lian: J. Alloys Compd., 2015, vol. 647, pp. 670–80.Google Scholar
  35. 35.
    Z.H. Cao, P.Y. Li, and X.K. Meng: Mater. Sci. Eng. A, 2009, vol. 516, pp. 253–8.Google Scholar
  36. 36.
    B.P. Sahu, C.K. Sarangi, and R. Mitra: Thin Solid Films, 2018, vol. 660, pp. 31–45.Google Scholar
  37. 37.
    R. Bormann, F. Gärtner, and K. Zöltzer: J. less-comm. metals, 1988, vol. 145, pp. 19–29.Google Scholar
  38. 38.
    M. Ghidelli, S. Gravier, J.J. Blandin, T. Pardoen, J.P. Raskin, and F. Mompiou: J. Alloys Compd., 2015, vol. 615, pp. S348–51.Google Scholar
  39. 39.
    Z. Altounian and J.O. Strom-Olsen: Phys. Rev. B, 1983, vol. 27, pp. 4149–56.Google Scholar
  40. 40.
    Z. Altounian, T. Guo-hua, and J.O. Strom-Olsen: J. Appl. Phys., 1983, vol. 54, pp. 3111–6.Google Scholar
  41. 41.
    H. Turnow, H. Wendrock, S. Menzel, T. Gemming, and J. Eckert: Thin Solid Films, 2014, vol. 561, pp. 48–52.Google Scholar
  42. 42.
    B.P. Sahu, A. Chatterjee, A. Dutta, and R. Mitra: Philos. Mag., 2019, vol. 99, pp. 2545–61.Google Scholar
  43. 43.
    K. Liu, Y. Li, J. Wang, and Q. Ma: J. Alloys Compd., 2015, vol. 624, pp. 234–40.Google Scholar
  44. 44.
    T. Hantschel, E.M. Chow, D. Rudolph, C. Shih, L. Wong, and D.K. Fork: Microelectron. Eng., 2003, vol. 68, pp. 803–9.Google Scholar
  45. 45.
    L. Mihailov, T. Spassov, and M. Bojinov: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 10499–506.Google Scholar
  46. 46.
    D. Pan, A. Inoue, T. Sakurai, and M.W. Chen: Proc. Natl. Acad. Sci., 2008, vol. 105, pp. 14769–72.Google Scholar
  47. 47.
    V. Maier-Kiener and K. Durst: JOM, 2017, vol. 69, pp. 2246–55.Google Scholar
  48. 48.
    B.N. Lucas and W.C. Oliver: Metall. Mater. Trans. A, 1999, vol. 30, pp. 601–10.Google Scholar
  49. 49.
    T.J. Rupert, J.C. Trenkle, and C.A. Schuh: Acta Mater., 2011, vol. 59, pp. 1619–31.Google Scholar
  50. 50.
    P. Gong, J. Jin, L. Deng, S. Wang, J. Gu, K. Yao, and X. Wang: Mater. Sci. Eng. A, 2017, vol. 688, pp. 174–9.Google Scholar
  51. 51.
    J. Hu, W. Zhang, G. Bi, J. Lu, W. Huo, and Y. Zhang: Mater. Sci. Eng. A, 2017, vol. 698, pp. 348–55.Google Scholar
  52. 52.
    Y. Liu, C. Huang, H. Bei, X. He, and W. Hu: Mater. Lett., 2012, vol. 70, pp. 26–9.Google Scholar
  53. 53.
    A. Chatterjee, M. Srivastava, G. Sharma, and J.K. Chakravartty: Mater. Lett., 2014, vol. 130, pp. 29–31.Google Scholar
  54. 54.
    M. Haghshenas, Y. Wang, Y.T. Cheng, and M. Gupta: Mater. Sci. Eng. A, 2018, vol. 716, pp. 63–71.Google Scholar
  55. 55.
    Y. Ogino, T. Yamasaki, and B.L. Shen: Metall. Mater. Trans. B, 1997, vol. 28, pp. 299–306.Google Scholar
  56. 56.
    Y.H. Chen, J.C. Huang, X.H. Du, and X. Wang: Intermetallics, 2016, vol. 68, pp. 101–6.Google Scholar
  57. 57.
    W.R. Jian, L. Wang, X.H. Yao, and S.N. Luo: Comput. Mater. Sci., 2018, vol. 154, pp. 225–33.Google Scholar
  58. 58.
    G. Patriarche, E. Le Bourhis, M.M.O. Khayyat, and M.M. Chaudhri: J. Appl. Phys., 2004, vol. 96, pp. 1464–8.Google Scholar
  59. 59.
    Y.H. Chen, J.C. Huang, L. Wang, and T.G. Nieh: Intermetallics, 2013, vol. 41, pp. 58–62.Google Scholar
  60. 60.
    J. Zhao, P. Huang, K.W. Xu, F. Wang, and T.J. Lu: Thin Solid Films, 2018, vol. 653, pp. 365–70.Google Scholar
  61. 61.
    Z. Ma, S. Long, Y. Pan, and Y. Zhou: Journal of Materials Science, 2008, vol. 43, pp. 5952–5.Google Scholar
  62. 62.
    S. Yang, Y.W. Zhang, and K. Zeng: J. Appl. Phys., 2004, vol. 95, pp. 3655–66.Google Scholar
  63. 63.
    J. Wu, Y. Pan, and J. Pi: Physica B: Condensed Matter, 2013, vol. 421, pp. 57–62.Google Scholar
  64. 64.
    P. Gong, S. Wang, F. Li, and X. Wang: Physica B: Cond. Matter, 2018, vol. 530, pp. 7–14.Google Scholar
  65. 65.
    F. Wang, J.M. Li, P. Huang, W.L. Wang, T.J. Lu, and K.W. Xu: Intermetallics, 2013, vol. 38, pp. 156–60.Google Scholar
  66. 66.
    Y. Wang, J. Zhang, K. Wu, G. Liu, D. Kiener, and J. Sun: Mater. Res. Lett., 2018, vol. 6, pp. 22–8.Google Scholar
  67. 67.
    T.H. Zhang, J.H. Ye, Y.H. Feng, and Y. Ma: Mater. Sci. Eng. A, 2017, vol. 685, pp. 294–9.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations