Metallurgical and Materials Transactions A

, Volume 50, Issue 12, pp 5888–5895 | Cite as

Microstructure and Mechanical Properties of Zamak 3 Alloy Subjected to Sliding Friction Treatment

  • Wei Zhang
  • Yan Du
  • Wangtu Huo
  • Jiangjiang Hu
  • Jinwen Lu
  • Xi Zhao
  • Lai-Chang Zhang
  • Yusheng ZhangEmail author


With aim to enhance the understanding of the relationship between the microstructure and mechanical properties of severe plastic-deformed Zn alloys, this work investigates the microstructural evolution and underlying deformation mechanisms of Zamak 3 alloy subjected to sliding friction treatment (SFT). With an increase in the strain from the matrix to the surface of the SFT Zn alloy, three types of microstructural characteristics are observed: (i) Gradual refinement of the Zn grains, (ii) First increase and then decrease in twin density, and (iii) Gradually elongated/broken eutectic phases. The results of mechanical tests reveal that work hardening plays a dominant role until strong softening resulting from microstructural refinement. The competition between hardening and softening related to the microstructural evolution determines the specific mechanical properties of Zn alloys.



This work was supported by National Natural Science Foundation of China (Grant Nos. 51701163, 51701166, 51801184), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2019JQ-410, 2018JM5145), and Innovation Team in key areas of Shaanxi Province (2016KCT-30).


  1. 1.
    H. Wang, B. Yu, W. Wang, G. Ren, W. Liang and J. Zhang: J. Alloys Comps., 2014, vol. 582, pp. 457-60.CrossRefGoogle Scholar
  2. 2.
    B.K. Prasad: Metal Science Journal, 2013, vol. 19, pp. 327-35.Google Scholar
  3. 3.
    T. Savaşkan, G. Pürçek and S. Murphy: Wear, 2002, vol. 252, pp. 693-703.CrossRefGoogle Scholar
  4. 4.
    G. Purcek, B.S. Altan, I. Miskioglu and P.H. Ooi: J. Mater. Process. Tech., 2004, vol. 148, pp. 279-87.CrossRefGoogle Scholar
  5. 5.
    H. Pinto and F.J.G. Silva: Procedia Manuf., 2017, vol. 11, pp. 517-25.CrossRefGoogle Scholar
  6. 6.
    W.J. Kim, C.S. Chung, D.S. Ma, S.I. Hong and H.K. Kim: Scr. Mater., 2003, vol. 49, pp. 333-38.CrossRefGoogle Scholar
  7. 7.
    Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579-83.CrossRefGoogle Scholar
  8. 8.
    N. Lugo, N. Llorca, J.M. Cabrera and Z. Horita: Mat. Sci. Eng. A, 2008, vol. 477, pp. 366-71.CrossRefGoogle Scholar
  9. 9.
    L.C. Zhang and L.Y. Chen: Adv. Eng. Mater., 2019, vol. 21, pp. 1801215.CrossRefGoogle Scholar
  10. 10.
    L. Wang, L. Xie, Y. Lv, L.C. Zhang, L. Chen, M. Qiang, Q. Jiao, Z. Di and W. Lu: Acta Mater., 2017, vol. 131, pp. 499-510.CrossRefGoogle Scholar
  11. 11.
    K. Lu and J. Lu: Mat. Sci. Eng. A, 2004, vol. 375-377, pp. 38-45.CrossRefGoogle Scholar
  12. 12.
    X.C. Liu, H.W. Zhang and K. Lu: Science, 2013, vol. 342, pp. 337-40.CrossRefGoogle Scholar
  13. 13.
    Y.S. Zhang, P.X. Zhang, H.Z. Niu, C. Chen, G. Wang, D.H. Xiao, X.H. Chen, Z.T. Yu, S.B. Yuan and X.F. Bai: Mat. Sci. Eng. A, 2014, vol. 607, pp. 351-55.CrossRefGoogle Scholar
  14. 14.
    K. Lu: Acta Metall. Sin, 2015, vol. 51, pp. 1-10.Google Scholar
  15. 15.
    X.L. Wu, P. Jiang, L. Chen, F.P. Yuan and Y.T. Zhu: Proc. Natl. Acad. Sci., 2014, vol. 111, pp. 7197-201.CrossRefGoogle Scholar
  16. 16.
    T.H. Fang, W.L. Li, N.R. Tao and K. Lu: Science, 2011, vol. 331, pp. 1587-90.CrossRefGoogle Scholar
  17. 17.
    G. Pürçek: J. Mater. Process.Tech., 2005, vol. 169, pp. 242-48.CrossRefGoogle Scholar
  18. 18.
    T.-S. Cho, H.-J. Lee, B. Ahn, M. Kawasaki and T.G. Langdon: Acta Mater., 2014, vol. 72, pp. 67-79.CrossRefGoogle Scholar
  19. 19.
    Y.S. Zhang, Q.M. Wei, H.Z. Niu, Y.S. Li, C. Chen, Z.T. Yu, X.F. Bai and P.X. Zhang: Int. J. Refract. Met. H., 2014, vol. 45, pp. 71-75.CrossRefGoogle Scholar
  20. 20.
    T.B. Massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, 1990.Google Scholar
  21. 21.
    W. Zhang, J.W. Lu, W.T. Huo, Y.S. Zhang and Q. Wei: Philos. Mag., 2018, vol. 98, pp. 1576-93.CrossRefGoogle Scholar
  22. 22.
    J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1-157.CrossRefGoogle Scholar
  23. 23.
    M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, J. Mater. Res. 11, 2128–30 (1997).CrossRefGoogle Scholar
  24. 24.
    M. Furukawa, Y. Ma, Z. Horita, M. Nemoto, R.Z. Valiev and T.G. Langdon: Mat. Sci. Eng. A, 1998, vol. 241, pp. 122-28.CrossRefGoogle Scholar
  25. 25.
    X. Zhang, H. Wang, R. Scattergood, J. Narayan, C. Koch, A. Sergueeve and A. Mukherjee: Acta Mater., 2002, vol. 50, pp. 4823-30.CrossRefGoogle Scholar
  26. 26.
    K.A. Padmanabhan, R.A. Vasin and F.U. Enikeev, Superplastic Flow, Phenomenology and Mechanics, Springer-Verlag Berlin Heidelberg GmbH, New York, 2001.CrossRefGoogle Scholar
  27. 27.
    I.-C. Choi, Y.-J. Kim, B. Ahn, M. Kawasaki, T.G. Langdon and J.-i. Jang: Scr. Mater., 2014, vol. 75, pp. 102-05.CrossRefGoogle Scholar
  28. 28.
    M.T.A. El-Khair, A. Daoud and A. Ismail: Mater. Lett., 2004, vol. 58, pp. 1754-60.CrossRefGoogle Scholar
  29. 29.
    D. Vojtěch, J. Kubásek, J. Šerák and P. Novák: Acta Mater., 2011, vol. 7, pp. 3515-22.Google Scholar
  30. 30.
    S.C. Sharma, B.M. Girish, D.R. Somashekar, R. Kamath and B.M. Satish: Compos. Sci. Technol. 1999, vol. 59, pp. 1805-12.CrossRefGoogle Scholar
  31. 31.
    Y.F. Wang, C.X. Huang, M.S. Wang, Y.S. Li and Y.T. Zhu: Scr. Mater., 2018, vol. 150, pp. 22-25.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Wei Zhang
    • 1
  • Yan Du
    • 1
  • Wangtu Huo
    • 1
  • Jiangjiang Hu
    • 2
  • Jinwen Lu
    • 1
  • Xi Zhao
    • 1
  • Lai-Chang Zhang
    • 3
  • Yusheng Zhang
    • 1
    • 4
    Email author
  1. 1.Northwest Institute for Nonferrous Metal ResearchXi’anChina
  2. 2.College of Mechanical EngineeringZhejiang University of TechnologyHangzhouChina
  3. 3.School of EngineeringEdith Cowan UniversityJoondalupAustralia
  4. 4.Xi’an Rare Metal Materials Institute Co., Ltd.Xi’anChina

Personalised recommendations