Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 12, pp 5650–5655 | Cite as

The Role of Retained Austenite Stability on Low-Temperature Mechanical Behaviors of a Quenching and Partitioning Steel

  • Z. Wang
  • M. X. HuangEmail author
Article
  • 156 Downloads

Abstract

Low-temperature deformation and fracture behaviors are studied for a quenching and partitioning (Q&P) steel by interrupted tensile tests and X-ray diffraction (XRD). The austenite stability decreases significantly from 298 K to 223 K, while further cooling to 77 K does not cause greater instability. The yielding, work hardening, and fracture behaviors are found to change under the influence of austenite stability at low temperatures.

Notes

Acknowledgments

M.X. Huang acknowledges the financial support from the National Natural Science Foundation of China (No. U1764252, U1560204), Research Grants Council of Hong Kong (No. 17255016, 17203014), and National Key Research and Development Project of China (No.2017YFB0304401). The authors also acknowledge Dr. Rendong Liu and Dr. Xu Wang of Ansteel for providing the materials.

Reference

  1. 1.
    H.L. Yi, L. Sun, and X.C. Xiong: Mater. Sci. Technol. (United Kingdom), 2018, vol. 34, pp. 1112–7.CrossRefGoogle Scholar
  2. 2.
    X. Zhu, W. Li, H. Zhao, L. Wang, and X. Jin: Int. J. Hydrogen Energy, 2014, vol. 39, pp. 13031–40.CrossRefGoogle Scholar
  3. 3.
    J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.M. Lee, Y.K. Lee, S.I. Lee, and B. Hwang: Acta Mater., 2017, vol. 122, pp. 199–206.CrossRefGoogle Scholar
  4. 4.
    X. Zhu, K. Zhang, W. Li, and X. Jin: Mater. Sci. Eng. A, 2016, vol. 658, pp. 400–8.CrossRefGoogle Scholar
  5. 5.
    Q. Hao, S. Qin, Y. Liu, X. Zuo, N. Chen, and Y. Rong: Mater. Sci. Eng. A, 2016, vol. 671, pp. 135–46.CrossRefGoogle Scholar
  6. 6.
    Y.J. Li, J. Kang, W.N. Zhang, D. Liu, X.H. Wang, G. Yuan, R.D.K. Misra, and G.D. Wang: Mater. Sci. Eng. A, 2018, vol. 710, pp. 181–91.CrossRefGoogle Scholar
  7. 7.
    Z. Wang, Z.C. Luo, and M.X. Huang: Materialia, 2018, vol. 4, pp. 260–7.CrossRefGoogle Scholar
  8. 8.
    K.H. Kwon, I.C. Yi, Y. Ha, K.K. Um, J.K. Choi, K. Hono, K. Oh-Ishi, and N.J. Kim: Scr. Mater., 2013, vol. 69, pp. 420–3.CrossRefGoogle Scholar
  9. 9.
    T. Sirithanakorn, M. Tanaka, and K. Higashida: Mater. Sci. Eng. A, 2014, vol. 611, pp. 383–7.CrossRefGoogle Scholar
  10. 10.
    L. Wang and J.G. Speer: Metallogr. Microstruct. Anal., 2013, vol. 2, pp. 268–81.CrossRefGoogle Scholar
  11. 11.
    I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–53.CrossRefGoogle Scholar
  12. 12.
    F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, and T. Antretter: Int. J. Plast., 2000, vol. 16, pp. 723–48.CrossRefGoogle Scholar
  13. 13.
    H.I. McHenry: The Properties of Austenitic Stainless Steel At Cryogenic Temperatures. Springer, New York, 1983.CrossRefGoogle Scholar
  14. 14.
    S. Chatterjee and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2013, vol. 23, pp. 1101–4.CrossRefGoogle Scholar
  15. 15.
    Z. Xiong, P.J. Jacques, A. Perlade, and T. Pardoen: Scr. Mater., 2018, vol. 157, pp. 6–9.CrossRefGoogle Scholar
  16. 16.
    L. Liu, B.B. He, G.J. Cheng, H.W. Yen, and M.X. Huang: Scr. Mater., 2018, vol. 150, pp. 1–6.CrossRefGoogle Scholar
  17. 17.
    ASTM, Standard Practice for X-Ray Determination of Retained Austenite in Steels with Near Random Crystallographic Orientation, ASTM Standards E 975-03, 1980.Google Scholar
  18. 18.
    G.K. Tirumalasetty, M.A. Van Huis, C. Kwakernaak, J. Sietsma, W.G. Sloof, and H.W. Zandbergen: Acta Mater., 2012, vol. 60, pp. 1311–21.CrossRefGoogle Scholar
  19. 19.
    B. Verlinden, P. Bocher, E. Girault, and E. Aernoudt: Scr. Mater., 2001, vol. 45, pp. 909–16.CrossRefGoogle Scholar
  20. 20.
    M.-M. Wang, J.-C. Hell, and C.C. Tasan: Scr. Mater., 2017, vol. 138, pp. 1–5.CrossRefGoogle Scholar
  21. 21.
    X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang: Scr. Mater., 2013, vol. 68, pp. 321–4.CrossRefGoogle Scholar
  22. 22.
    P.J. Jacques, F. Delannay, and J. Ladrière: Metall. Mater. Trans. A 2001, vol. 32, pp. 2759–68.CrossRefGoogle Scholar
  23. 23.
    Y. Tomita and K. Okabayashi: Metall. Trans. A, 1983, vol. 14, pp. 2387–93.CrossRefGoogle Scholar
  24. 24.
    F. Yang, H. Luo, E. Pu, S. Zhang, and H. Dong: Int. J. Plast., 2018, vol. 103, pp. 188–202.CrossRefGoogle Scholar
  25. 25.
    J. Min, L.G. Hector, L. Zhang, L. Sun, J.E. Carsley, and J. Lin: Mater. Des., 2016, vol. 95, pp. 370–86.CrossRefGoogle Scholar
  26. 26.
    L.P. Kubin and Y. Estrin: J. Phys. III, 1991, vol. 1, pp. 929–43.Google Scholar
  27. 27.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: Science., 2014, vol. 345, pp. 1153–8.CrossRefGoogle Scholar
  28. 28.
    M. Kuzmina, D. Ponge, and D. Raabe: Acta Mater., 2015, vol. 86, pp. 182–92.CrossRefGoogle Scholar
  29. 29.
    J.W. Morris, Jr.: ISIJ Int., 2011, vol. 51, pp. 1569–75.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of Hong KongHong KongChina
  2. 2.Shenzhen Institute of Research and InnovationThe University of Hong KongShenzhenChina

Personalised recommendations