Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 12, pp 5935–5944 | Cite as

Effect of Ce Addition on Fluidity of Casting Aluminum Alloy A356

  • Guodong Niu
  • Jian MaoEmail author
  • Jeff Wang
Article
  • 132 Downloads

Abstract

Fluidity is an important factor defining the castability of aluminum casting alloys. In this study, the influence of Ce addition on the fluidity of A356 alloy was investigated using a multichannel fluidity test mold. There is a non-monotonic relationship between fluidity length and Ce content. Addition of Ce below 0.3 wt pct was shown to increase the fluidity of A356 alloy. The fluidity length of the alloy with 0.3 wt pct Ce improved from 93.2 to 130.2 mm compared with that of A356 alloy due to the refinement of α-Al and the modification of eutectic Si. The addition of Ce could provide nucleation particles and cause constitutional undercooling in A356 alloy. Furthermore, the addition of Ce decreased the eutectic temperature and induced twinning of Si. However, with a higher Ce content, the fluidity length dramatically decreased because of the formation of intermetallic compounds. When the content of Ce is 0.5 wt pct, a mass of reticular Al-20Si-10Mg-3Fe-Ce intermetallic compounds was found in the melt. When the Ce content further increased to 0.7 wt pct, the fluidity worsened (73.3 mm). Excess Ce element reacts with Ti in the alloy to form the Al-17Ce-12Ti-2Si phase, resulting in the formation of coarse primary dendrites of α-Al, which would damage the fluidity of A356 alloy.

Notes

Acknowledgment

This work was supported by the Sichuan Science and Technology Program (No. 2018GZ0011).

References

  1. 1.
    A.M. Cardinale, D. Macciò, G. Luciano, E. Canepa,and P. Traverso: J. Alloys Compd.,2017, vol. 695, pp. 2180-2189.CrossRefGoogle Scholar
  2. 2.
    Z. Chen, C. Ma,and P. Chen: Int. J. Miner., Metall. Mater.,2012, vol. 19, pp. 131-135.CrossRefGoogle Scholar
  3. 3.
    Feng J, Ye B, Zuo LJ, Wang QD, Wang Q, Jiang H, Ding W (2017) Metall. Mater. Trans. A 48:4632–4644CrossRefGoogle Scholar
  4. 4.
    M. Zhu, Z. Jian, G. Yang,and Y. Zhou: Mater. Des.,2012, vol. 36, pp. 243-249.CrossRefGoogle Scholar
  5. 5.
    B.K. Kang,and I. Sohn: Metall. Mater. Trans. A,2018, vol. 49, pp. 5137-5145.CrossRefGoogle Scholar
  6. 6.
    K.R. Ravi, R.M. Pillai, K.R. Amaranathan, B.C. Pai,and M. Chakraborty: J. Alloys Compd.,2008, vol. 456, pp. 201-210.CrossRefGoogle Scholar
  7. 7.
    G. Yang. H.R. Qi, and Q Shi: Light alloy. Fabr. Technol.,2007, vol. 35, pp. 19-22+53Google Scholar
  8. 8.
    A.K. Dahle, P.A. Tondel, C.J. Paradies,and L. Arnberg: Metall. Mater. Trans. A,1996, vol. 27, pp. 2305-2313.CrossRefGoogle Scholar
  9. 9.
    Q. Han,and H. Xu: Scr. Mater.,2005, vol. 53, pp. 7-10.CrossRefGoogle Scholar
  10. 10.
    Heidarzadeh A, Emamy M, Rahimzadeh A, Soufi R, Heidary SB, Nasibi S (2013) J. Mater. Eng. Perform. 23:469–476.CrossRefGoogle Scholar
  11. 11.
    M. Di Sabatino, L. Arnberg,and D. Apelian: Int. J. Metalcast.,2008, vol. 2, pp. 17-27.CrossRefGoogle Scholar
  12. 12.
    K. Puparattanapong, P. Pandee, S. Boontein,and C. Limmaneevichitr: Trans. Indian Inst. Met.,2018, vol. 71, pp. 1583-1593.CrossRefGoogle Scholar
  13. 13.
    X. Song, H. Yan, Q. Wu, and Z. Hu: Int. J. Cast Met. Res., 2018, pp. 1-8.Google Scholar
  14. 14.
    W. Prukkanon, N. Srisukhumbowornchai,and C. Limmaneevichitr: J. Alloys Compd.,2009, vol. 477, pp. 454-460.CrossRefGoogle Scholar
  15. 15.
    B. Li, H. Wang, J. Jie,and Z. Wei: J. Alloys Compd.,2011, vol. 509, pp. 3387-3392.CrossRefGoogle Scholar
  16. 16.
    G. Wang, X. Bian, W. Wang,and J. Zhang: Mater. Lett.,2003, vol. 57, pp. 4083-4087.CrossRefGoogle Scholar
  17. 17.
    Y. Dong, R. Zheng, X. Lin, J. Ye,and L. Sun: J. Rare Earths,2013, vol. 31, pp. 204-208.CrossRefGoogle Scholar
  18. 18.
    C. Morando, O. Fornaro, O. Garbellini,and H. Palacio: Procedia Mater. Sci.,2015, vol. 8, pp. 959-967.CrossRefGoogle Scholar
  19. 19.
    A. Knuutinen, K. Nogita, S.D. McDonald,and A.K. Dahle: J. Light Met.,2001, vol. 1, pp. 229-240.CrossRefGoogle Scholar
  20. 20.
    U. Patakham, J. Kajornchaiyakul,and C. Limmaneevichitr: J. Alloys Compd.,2013, vol. 575, pp. 273-284.CrossRefGoogle Scholar
  21. 21.
    Z. Chen, C. Ma,and P. Chen: Trans. Nonferrous Met. Soc. China,2012, vol. 22, pp. 42-46.CrossRefGoogle Scholar
  22. 22.
    Z. Chen, X. Hao, J. Zhao,and C. Ma: Trans. Nonferrous Met. Soc. China,2013, vol. 23, pp. 3561-3567.CrossRefGoogle Scholar
  23. 23.
    S. Zhang, Y. Zhao, X. Cheng, G. Chen,and Q. Dai: J. Alloys Compd.,2009, vol. 470, pp. 168-172.CrossRefGoogle Scholar
  24. 24.
    Y. Han, K. Li, J. Wang, D. Shu,and B. Sun: Mater. Sci. Eng. A,2005, vol. 405, pp. 306-312.CrossRefGoogle Scholar
  25. 25.
    W. Jiang, Z. Fan, D. Liu, D. Liao, X. Dong,and X. Zong: Mater. Sci. Eng. A,2013, vol. 560, pp. 396-403.CrossRefGoogle Scholar
  26. 26.
    C. Xu, W. Xiao, S. Hanada, H. Yamagata,and C. Ma: Mater. Charact.,2015, vol. 110, pp. 160-169.CrossRefGoogle Scholar
  27. 27.
    L. Zheng, L.H. Lin,and C.Q. Chun: Solid State Phenom.,2015, vol. 217-218, pp. 340-346.Google Scholar
  28. 28.
    L. Jin, Y. B. Kang, P. Chartrand,and C.D. Fuerst: Calphad,2011, vol. 35, pp. 30-41.CrossRefGoogle Scholar
  29. 29.
    Y. C. Tsai, S. L. Lee,and C. K. Lin: J. Chin. Inst. Eng.,2011, vol. 34, pp. 609-616.CrossRefGoogle Scholar
  30. 30.
    E.M. Elgallad, H.W. Doty, S.A. Alkahtani,and F.H. Samuel: Adv. Mater. Sci. Eng., 2016. https://doi.org/10.1155/2016/5027243CrossRefGoogle Scholar
  31. 31.
    B. Zhao, Q. Cai, X. Li, B. Li,and J. Cheng: Met. Mater. Int.,2018, vol. 24, pp. 945-954.CrossRefGoogle Scholar
  32. 32.
    S. Z. Lu,and A. Hellawell: Metall. Trans. A,1987, vol. 18, pp. 1721-1733.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSichuan UniversityChengduChina
  2. 2.China Science LabGeneral Motors Global Research and DevelopmentShanghaiChina

Personalised recommendations