Metallurgical and Materials Transactions A

, Volume 50, Issue 12, pp 5614–5626 | Cite as

Fatigue Life Improvement in Lean Duplex Stainless Steel by Peening Treatments

  • Renata StrubbiaEmail author
  • Silvina Hereñú
  • Gilberto Gómez-Rosas
  • Valeria Fuster
  • Carlos Rubio González


The present work studies the effects of shot peening (SP) and laser shock peening without coating (LSPwC) on the low-cycle fatigue life of the lean duplex stainless steel LDX 2101. LSPwC with two pulse densities, 2500 and 5000 pulse/cm2, were considered. To analyze the changes induced by each peening treatment, roughness, residual stress, hardness, quantitative phase analysis, qualitative surface chemical composition and dislocation microstructure were evaluated. This article shows that SP and LSPwC induce in the surface; beneficial compressive residual stresses, increase of hardness and roughness and in the austenite phase a pronounced work hardening. The strong barrier of this hardened austenite phase to microcrack growth can explain the improvement in the fatigue life of LDX 2101 with peening treatments. Moreover, the highest fatigue life is achieved for the LSPwC-treated material with 5000 pulse/cm2 because of the presence of deformation twins in the autenitic phase.



This work was supported by CONICET (PIP No. 0373 and PUE-IFIR-RD 1691/16) and by the Cooperation Program Conacyt/Mincyt (MX/11/12) between México and Argentina. The authors thank Cym Materiales S.A. for performing the shot-peening treatments (


  1. 1.
    L. Wagner, M. Mhaede, M. Wollmann, I. Altenberger, and Y. Sano: Int. J. Struct. Integr., 2011, vol. 2, pp. 185–99.Google Scholar
  2. 2.
    W.Z. Zhuang and G.R. Halford: Int. J. Fatigue, 2001, vol. 23, pp. S31–7.Google Scholar
  3. 3.
    R.C. McClung: Fatigue Fract. Eng. Mater. Struct., 2007, vol. 30, pp. 173–205.Google Scholar
  4. 4.
    I. Altenberger, R.K. Nalla, Y. Sano, L. Wagner, and R.O. Ritchie: Int. J. Fatigue, 2012, vol. 44, pp. 292–302.Google Scholar
  5. 5.
    J. Cao, J. Zhang, Y. Hua, Z. Rong, R. Chen, and Y. Ye: J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, vol. 32, pp. 1186–92.Google Scholar
  6. 6.
    I. Nikitin and I. Altenberger: Mater. Sci. Eng. A, 2007, vol. 465, pp. 176–82.Google Scholar
  7. 7.
    Volker Schulze: Modern Mechanical Surface Treatment. States, Stability, Effects., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006.Google Scholar
  8. 8.
    Y. Zhang, J. Lu, and K. Luo: Laser Shock Processing of FCC Metals, Springer, Berlin, 2013.Google Scholar
  9. 9.
    A.K. Gujba and M. Medraj: Materials (Basel)., 2014, vol. 7, pp. 7925–74.Google Scholar
  10. 10.
    C.S. Montross, T. Wei, L. Ye, G. Clark, and Y. Mai: Int. J. Fatigue, 2002, vol. 24, pp. 1021–36.Google Scholar
  11. 11.
    A. Clauer: in 4th International Conference on Laser Peening, Madrid, Spain, 2013.Google Scholar
  12. 12.
    M.J. Leap, J. Rankin, J. Harrison, L. Hackel, J. Nemeth, and J. Candela: Int. J. Fatigue, 2011, vol. 33, pp. 788–99.Google Scholar
  13. 13.
    R.D. Tenaglia and D.F. Lahrman: AMPTIAC Q., 2003, vol. 7, pp. 3–7.Google Scholar
  14. 14.
    Y. Sano: J. Laser Micro/Nanoengineering, 2006, vol. 1, pp. 161–6.Google Scholar
  15. 15.
    D. Karthik and S. Swaroop: Mater. Manuf. Process., 2017, vol. 32, pp. 1565–72.Google Scholar
  16. 16.
    R.K. Nalla, I. Altenberger, U. Noster, G.Y. Liu, B. Scholtes, and R.O. Ritchie: Mater. Sci. Eng. A, 2003, vol. 355, pp. 216–30.Google Scholar
  17. 17.
    C.A. Vázquez Jiménez, G. Gómez Rosas, C. Rubio González, V. Granados Alejo, and S. Hereñú: Opt. Laser Technol., 2017, vol. 97, pp. 308–15.Google Scholar
  18. 18.
    L. Spadaro, G. Gomez-Rosas, C. Rubio-González, R. Bolmaro, A. Chavez-Chavez, and S. Hereñú: Opt. Laser Technol., 2017, vol. 93, pp. 208–15.Google Scholar
  19. 19.
    C. Correa, L. Ruiz De Lara, M. Díaz, A. Gil-Santos, J.A. Porro, and J.L. Ocaña: Int. J. Fatigue, 2015, vol. 79, pp. 1–9.Google Scholar
  20. 20.
    D. Karthik and S. Swaroop: Surf. Coatings Technol., 2016, vol. 291, pp. 161–71.Google Scholar
  21. 21.
    A.S. Gill, A. Telang, and V.K. Vasudevan: J. Mater. Process. Technol., 2015, vol. 225, pp. 463–72.Google Scholar
  22. 22.
    M. Obata, Y. Sano, N. Mukai, M. Yoda, S. Shima, and M. Kanno: in The Seventh International Conference on Shot Peening, 1999, pp. 387–94.Google Scholar
  23. 23.
    P. Peyre, C. Carboni, A. Sollier, L. Berthe, C. Richard, E. de Los Rios, and R. Fabbro: in International Symposium on High-Power Laser Ablation, vol. 4760, 2002, pp. 654–66.Google Scholar
  24. 24.
    E. Alfonsson: in 8th Duplex Stainless Steels conference Proceedings, J. Charles, ed., Beaune, France, 2010, pp. 787–93.Google Scholar
  25. 25.
  26. 26.
    S. Baldo: Università degli Dtudi di Padova, 2010,
  27. 27.
    C. Rubio-González, C. Felix-Martinez, G. Gomez-Rosas, J.L. Ocaña, M. Morales, and J.S. Porro: Mater. Sci. Eng. A, 2011, vol. 528, pp. 914–9.Google Scholar
  28. 28.
    V. Granados-Alejo, C. Rubio-González, C.A. Vázquez-Jiménez, J.A. Banderas, and G. Gómez-Rosas: Opt. Laser Technol., 2018, vol. 101, pp. 531–44.Google Scholar
  29. 29.
    C.A. Vázquez Jiménez, R. Strubbia, G. Gómez Rosas, C. Rubio González, and S. Hereñú: Opt. Laser Technol., 2019, vol. 111, pp. 789–96.Google Scholar
  30. 30.
    UNI EN ISO 4288:2000, Geometrical Product Specifications (GPS)–Surface texture: Profile Method–Rules and Procedures for the Assessment of Surface Texture, UNI, Milano, Italy, 2000.Google Scholar
  31. 31.
    ASTM 2002: Annual Book of ASTM Standards, No. E837-13a, West Conshohocken, PA, 2013.Google Scholar
  32. 32.
    L. Ruiz de Lara de Luis: Universidad Politécnica de Madrid, 2015,
  33. 33.
    H.M. Rietveld: J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71.Google Scholar
  34. 34.
    L. Lutterotti, S. Matthies, H.R. Wenk, A.S. Schultz, and J.W. Richardson: J. Appl. Phys., 1997, vol. 81, pp. 594–600.Google Scholar
  35. 35.
    L. Lutterotti: Maud (Material Analysis Using Diffraction), 1997,
  36. 36.
    N.C. Popa: J. Appl. Crystallogr., 1998, vol. 31, pp. 176–80.Google Scholar
  37. 37.
    N.C. Popa: J. Appl. Crystallogr., 1992, vol. 25, pp. 611–6.Google Scholar
  38. 38.
    P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Béranger, and C. Lemaitre: Mater. Sci. Eng. A, 2000, vol. 280, pp. 294–302.Google Scholar
  39. 39.
    Q. Liu, K. Ding, L. Ye, C. Rey, S.A. Barter, P.K. Sharp, and G. Clark: in Struct. Integr. Fract. Int. Conf., 2004, pp. 235–40.Google Scholar
  40. 40.
    H. Luong and M.R. Hill: Mater. Sci. Eng. A, 2010, vol. 527, pp. 699–707.Google Scholar
  41. 41.
    F.Z. Dai, Y.K. Zhang, J.Z. Lu, D.P. Wen, X.J. Hua, X.D. Ren, and J.Z. Zhou: Surf. Coat. Technol., 2015, vol. 261, pp. 35–40.Google Scholar
  42. 42.
    L. Petan, J.L. Ocaña, and J. Grum: J. Mech. Eng., 2016, vol. 62, pp. 291–8.Google Scholar
  43. 43.
  44. 44.
    T. Hahn, ed.: International Tables for Crystallography, Volume A: Space-Group Symmetry, vol. A, 5th ed., Springer, Dordrecht, 2002.Google Scholar
  45. 45.
    R. Strubbia, S. Hereñú, M.C. Marinelli, and I. Alvarez-Armas: Mater. Sci. Eng. A, 2016, vol. 659, pp. 47–54.Google Scholar
  46. 46.
    M. Chen, H. Liu, L. Wang, Z. Xu, V. Ji, and C. Jiang: Vacuum, 2018, vol. 153, pp. 145–53.Google Scholar
  47. 47.
    M.M. Nowell, S.I. Wright, and J.O. Carpenter: in Materials Science and Technology 2009 Conference and Exhibition, 2009, pp. 933–43.Google Scholar
  48. 48.
    M. Chen, H. Liu, L. Wang, C. Wang, K. Zhu, Z. Xu, C. Jiang, and V. Ji: Surf. Coatings Technol., 2018, vol. 344, pp. 132–40.Google Scholar
  49. 49.
    P.S. Prevéy, M.J. Shepard, and P.R. Smith: in Proceedings of 6th National Turbine Engine High Cycle Fatigue (HCF) Conference, 2001.Google Scholar
  50. 50.
    L. Wagner: Mater. Sci. Eng. A, 1999, vol. 263, pp. 210–6.Google Scholar
  51. 51.
    E. Maawad, H.G. Brokmeier, L. Wagner, Y. Sano, and C. Genzel: Surf. Coatings Technol., 2011, vol. 205, pp. 3644–50.Google Scholar
  52. 52.
    D. Karthik, S. Kalainathan, and S. Swaroop: Surf. Coatings Technol., 2015, vol. 278, pp. 138–45.Google Scholar
  53. 53.
    E. Castañeda, C. Rubio-Gonzalez, A. Chavez-Chavez, and G. Gomez-Rosas: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2521–5.Google Scholar
  54. 54.
    L.E. Murr: in Proceedings of the Society of Photo-Optical Instrumentation Engineers, 1981, pp. 607–73.Google Scholar
  55. 55.
    R. Strubbia, S. Hereñú, M.C. Marinelli, and I. Alvarez-Armas: Int. J. Fatigue, 2012, vol. 41, pp. 90–4.Google Scholar
  56. 56.
    R. Strubbia, M. Sennour, and S. Hereñú: Fatigue Fract. Eng. Mater. Struct., 2018, vol. 41, pp. 473–82.Google Scholar
  57. 57.
    H. Mughrabi : Dislocations Prop. real Mater., 1985, vol. 323, pp. 244–61.Google Scholar
  58. 58.
    K.H. Lo, C.H. Shek, and J.K.L. Lai: Mater. Sci. Eng. R, 2009, vol. R65, pp. 39–104.Google Scholar
  59. 59.
    Y. He, K. Li, I.S. Cho, C.S. Lee, I.G. Park, J. Song, C.-W. Yang, J.-H. Lee, and K. Shin: Appl. Microsc., 2015, vol. 45, pp. 155–69.Google Scholar
  60. 60.
    J.J. Moverare and M. Ode: Mater. Sci. Eng. A, 2002, vol. 337, pp. 25–38.Google Scholar
  61. 61.
    J. Johansson, M. Oden, and X.-H. Zeng: Acta Mater., 1999, vol. 47, pp. 2669–84.Google Scholar
  62. 62.
    A. Ciuffini, S. Barella, L. Peral-Martínez, C. Mapelli, and I. Fernández-Pariente: Materials (Basel)., 2018, vol. 11, 1038.Google Scholar
  63. 63.
    Q. Feng, C. Jiang, Z. Xu, L. Xie, and V. Ji: Surf. Coat. Technol., 2013, vol. 226, pp. 140–4.Google Scholar
  64. 64.
    J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108–18.Google Scholar
  65. 65.
    A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, and S. Tarafder: Mater. Sci. Eng. A, 2008, vol. 486, pp. 283–6.Google Scholar
  66. 66.
    P.J. Ferreira, J.B. Vander-Sande, M.A. Fortes, and A. Kyrolainen: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3091–3101.Google Scholar
  67. 67.
    A.Y. Chen, H.H. Ruan, J. Wang, H.L. Chan, Q. Wang, Q. Li, and J. Lu: Acta Mater., 2011, vol. 59, pp. 3697–709.Google Scholar
  68. 68.
    P. Peyre, R. Fabbro, P. Merrien, and H.P. Lieurade: Mater. Sci. Eng. A, 1996, vol. 210, pp. 102–13.Google Scholar
  69. 69.
    A.H. Clauer, J.K. Lee, R.A. Brockman, W.R. Braisted, S.A. Noll, and A. Gilat: in Fifth National Turbine Engine High Cycle Fatigue Conference, 2000, pp. 30–39.Google Scholar
  70. 70.
    M. Kumagai, K. Akita, M. Imafuku, and S. Ohya: Mater. Sci. Eng. A, 2014, vol. 608, pp. 21–24.Google Scholar
  71. 71.
    J.J. Roa, G. Fargas, E. Jiménez-Piqué, and A. Mateo: Mater. Sci. Eng. A, 2014, vol. 597, pp. 232–6.Google Scholar
  72. 72.
    P. Bowen and C.A. Hippsley: Acta Metall., 1988, vol. 36, pp. 425–39.Google Scholar
  73. 73.
    A.G. Pineau and R.M. Pelloux: Metall. Trans., 1974, vol. 5, pp. 1103–12.Google Scholar
  74. 74.
    C. Ye, S. Suslov, B.J. Kim, E. A. Stach, and G.J. Cheng: Acta Mater., 2011, vol. 59, pp. 1014–25.Google Scholar
  75. 75.
    R. Lillbacka, G. Chai, M. Ekh, P. Liu, E. Johnson, and K. Runesson: Acta Mater., 2007, vol. 55, pp. 5359–68.Google Scholar
  76. 76.
    J. Stolarz and J. Foct: Mater. Sci. Eng. A, 2001, vol. 319–321, pp. 501–5.Google Scholar
  77. 77.
    N.A. Koneva, L.A. Teplyakova, O. V. Sosnin, V. V. Tsellermayer, and V. V. Kovalenko: Russ. Phys. J., 2002, vol. 45, pp. 303–18.Google Scholar
  78. 78.
    U. Martin, I. Altenberger, B. Scholtes, K. Kremmer, and H. Oettel: Mater. Sci. Eng. A, 1998, vol. 246, pp. 69–80.Google Scholar
  79. 79.
    I. Altenberger, B. Scholtes, U. Martin, and H. Oettel: Mater. Sci. Eng. A, 1999, vol. 264, pp. 1–16.Google Scholar
  80. 80.
    R. Strubbia, S. Hereñú, I. Alvarez-Armas, and U. Krupp: Mater. Sci. Eng. A, 2014, vol. 615, pp. 169–74.Google Scholar
  81. 81.
    J. Man, M. Petrenec, K. Obrtlík, and J. Polák: Acta Mater., 2004, vol. 52, pp. 5551–61.Google Scholar
  82. 82.
    M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2009.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Instituto de Física RosarioCONICET-UNRRosarioArgentina
  2. 2.Departamento de Física, Centro Universitario de Ciencias Exactas e IngenieríasUniversidad de GuadalajaraGuadalajaraMexico
  3. 3.Centro de Ingeniería y Desarrollo IndustrialQuerétaroMexico

Personalised recommendations