Metallurgical and Materials Transactions A

, Volume 50, Issue 12, pp 5750–5759 | Cite as

A Novel Stress Relaxation Modeling for Predicting the Change of Residual Stress During Annealing Heat Treatment

  • Qian Bai
  • Heng Feng
  • Li-Kun Si
  • Ran Pan
  • Yi-Qi WangEmail author


Large tensile residual stresses generated during cold working processes could negatively affect the integrity and geometric accuracy of workpieces. The stress relief annealing is one of the fundamental issues in controlling the deformation of the cold-worked part. A novel residual stress relaxation model was proposed to predict the change of residual stress during the annealing process by considering the dislocation evolution mechanism and the plasticity theory. Copper workpieces were rolled with different rolling ratios and annealed under different heating temperatures and heating times. Hole-drilling experiments were conducted to measure the residual stresses for calibrating the proposed model. The calibrated model was then used to predict the change of residual stresses during annealing heat treatment. The results showed that the initial work hardening of workpieces had a great effect on the residual stress relaxation. Higher initial dislocation density hindered the residual stress relaxation during the annealing process. The results provided guidance on optimizing the annealing conditions for residual stress reduction.



This study was supported by the Science Challenge Project (JCKY2016212A506-0101), the National Natural Science Foundation of China (51605077), the Fundamental Research Funds for the Central Universities (DUT18LAB18), and the Science Fund for Creative Research Groups of NSFC (51621064).


  1. 1.
    K. Huang, W. Yang and X. Ye, International Journal of Mechanical Sciences, 2018, vol. 135, pp. 43-52.CrossRefGoogle Scholar
  2. 2.
    W. Wang, H. Liu, C. Zhu, X. Du and J. Tang, International Journal of Mechanical Sciences, 2019, vol. 151, pp. 263-273.CrossRefGoogle Scholar
  3. 3.
    C. Wang, C. Jiang and V. Ji, Journal of Materials Processing Technology, 2017, vol. 240, pp. 98-103.CrossRefGoogle Scholar
  4. 4.
    B. J. Foss, S. Gray, M. C. Hardy, S. Stekovic, D. S. McPhail and B. A. Shollock, Acta Materialia, 2013, vol. 61(7), pp. 2548-2559.CrossRefGoogle Scholar
  5. 5.
    Z. Wang, A. D. Stoica, D. Ma, A. M. Beese, Materials Science and Engineering: A, 2018, vol. 714, pp. 75-83.CrossRefGoogle Scholar
  6. 6.
    J. Epp, H. Surm, T. Hirsch and F. Hoffmann, Journal of Materials Processing Technology, 2011, vol. 211(4), pp. 637-643.CrossRefGoogle Scholar
  7. 7.
    I. Nikitin and M. Besel, Scripta Materialia, 2008, vol. 58(3), pp. 239-242.CrossRefGoogle Scholar
  8. 8.
    V. P. Radchenko, M. N. Saushkin and V. V. Tsvetkov, Journal of Applied Mechanics and Technical Physics, 2016, vol. 57(3), pp. 559-568.CrossRefGoogle Scholar
  9. 9.
    P. Dong, S. Song and J. Zhang, International Journal of Pressure Vessels and Piping, 2014, vol. 122, pp. 6-14.CrossRefGoogle Scholar
  10. 10.
    L. A. Godlewski, X. Su, T. M. Pollock and J. E. Allison, Metallurgical and Materials Transactions A, 2013, vol. 44(10), pp. 4809-4818.CrossRefGoogle Scholar
  11. 11.
    Z. Trojanová, P. Lukác and K. U. Kainer, Advanced Engineering Materials, 2007, vol. 9(5), pp. 370-374.CrossRefGoogle Scholar
  12. 12.
    K. Sherafatnia, G. H. Farrahi and A. H. Mahmoudi, International Journal of Mechanical Sciences, 2018, vol. 137, pp. 171-181.CrossRefGoogle Scholar
  13. 13.
    A. Madariaga, J. Aperribay, P. J. Arrazola, J. A. Esnaola, E. Hormaetxe, A. Garay and K. Ostolaza, Journal of Materials Engineering and Performance, 2017, vol. 26(8), pp. 3728-3738.CrossRefGoogle Scholar
  14. 14.
    H. D. Chandler, Materials Science and Engineering: A, 2010, vol. 527(23), pp. 6219-6223.CrossRefGoogle Scholar
  15. 15.
    B. Babu and L. E. Lindgren, International Journal of Plasticity, 2013, vol. 50, pp. 94-108.CrossRefGoogle Scholar
  16. 16.
    H. Wang, B. Clausen, L. Capolungo, I. J. Beyerlein, J. Wang and C. N. Tome, International Journal of Plasticity, 2016, vol. 79, pp. 275-292.CrossRefGoogle Scholar
  17. 17.
    D. J. Buchanan, R. John, R. A. Brockman and A. H. Rosenberger, JOM, 2010, vol. 62(1), pp. 75-79.CrossRefGoogle Scholar
  18. 18.
    Y. C. Lin, X. M. Chen, D. X. Wen and M. S. Chen, Computational Materials Science, 2014, vol. 83, pp. 282-289.CrossRefGoogle Scholar
  19. 19.
    F. Roters, D. Raabe and G. Gottstein, Acta Materialia, 2000, vol. 48(17), pp. 4181-4189.CrossRefGoogle Scholar
  20. 20.
    W. Blum, P. Eisenlohr and F. Breutinger, Metallurgical and Materials Transactions A, 2002, vol. 33(2), pp. 291-303.CrossRefGoogle Scholar
  21. 21.
    W. Blum and P. Eisenlohr, Materials Science and Engineering: A, 2009, vol. 510-511, pp. 7-13.CrossRefGoogle Scholar
  22. 22.
    P. Eisenlohr and W. Blum, Materials Science and Engineering: A, 2005, vol. 400-401, pp. 175-181.CrossRefGoogle Scholar
  23. 23.
    S. Rahimi, M. King and C. Dumont, Materials Science and Engineering: A, 2017, vol. 708, pp. 563-573.CrossRefGoogle Scholar
  24. 24.
    S. D. Antolovich and R.W. Armstrong, Progress in Materials Science, 2014, vol. 59, pp. 1-160.CrossRefGoogle Scholar
  25. 25.
    S. Curtze and V. T. Kuokkala, Acta Materialia, 2010, vol. 58, pp. 5129-5141.CrossRefGoogle Scholar
  26. 26.
    H. J. Frost and M. F. Ashby, Deformation mechanism maps: the plasticity and creep of metals and ceramics. (Pergamon, Oxford, 1982).Google Scholar
  27. 27.
    X.G. Fan and H. Yang, International Journal of Plasticity, 2011, vol. 27(11), pp. 1833-1852.CrossRefGoogle Scholar
  28. 28.
    D. Kuhlmann-Wilsdorf, Materials Science and Engineering: A, 1989, vol. 113, pp. 1-41.CrossRefGoogle Scholar
  29. 29.
    U. F. Kocks and H. Mecking, Progress in Materials Science, 2003, vol. 48(3), pp. 171-273.CrossRefGoogle Scholar
  30. 30.
    N. Bertin, L. Capolungo and I. J. Beyerlein, International Journal of Plasticity, 2013, vol. 49, pp. 119-144.CrossRefGoogle Scholar
  31. 31.
    G. K. Williamson and R. E. Smallman, Philosopical Magazine, 1956, vol. 1(1), pp. 34-46.CrossRefGoogle Scholar
  32. 32.
    G. K. Williamson and W. H. Hall, Acta Metallurgica, 1953, vol. 1, pp. 22-31.CrossRefGoogle Scholar
  33. 33.
    M. Kazeminezhad, Materials Science and Engineering A, 2008, vol. 486, pp. 202–207.CrossRefGoogle Scholar
  34. 34.
    L. Błaż and P. Kwapisiński, Archives of Metallurgy and Materials, 2009, vol. 54(1), pp. 161-170.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Qian Bai
    • 1
  • Heng Feng
    • 1
  • Li-Kun Si
    • 1
  • Ran Pan
    • 2
  • Yi-Qi Wang
    • 1
    Email author
  1. 1.Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of EducationDalian University of TechnologyDalianP.R. China
  2. 2.Beijing Aeronautical Manufacturing Technology Research InstituteBeijingP.R. China

Personalised recommendations