Metallurgical and Materials Transactions A

, Volume 50, Issue 12, pp 5734–5749 | Cite as

On Formation of Abnormally Large Grains in Annealing Prestrained Aluminum Alloy Multiport Extrusion Tubes

  • Kai Li
  • Tianxia Zou
  • Dayong LiEmail author
  • Yinghong Peng
  • Da Shu


Abnormally large grains (ALGs) appear after annealing of prestrained multiport extrusion (MPE) tubes, which will significantly degrade the mechanical properties of the tubes. In the present work, the underpinning mechanisms of ALGs’ formation are probed through experiments. MPE tubes made of A3102 alloy are prestrained by roll leveling with different thickness reduction ratios and are then subjected to annealing at 600 °C for different times. Microstructural evolutions during annealing are characterized through electron backscatter diffraction (EBSD), in terms of crystallographic orientation, grain size distribution, grain boundary characters, and residual plastic strain. Uniaxial tension tests are carried out on the annealed tubes to study the effect of annealing on tubes’ strength. The thickness reduction prior to annealing produces heterogeneous deformation in tubes. The hard zones formed near grain boundaries and triple junction (TJs) are responsible for recrystallized nucleation in annealing. The duration of the identified incubation period for grain growth is inversely proportional to the thickness reduction ratio. The strain-free nuclei formed in the incubation period can grow fast into ALGs by means of strain-induced boundary migration. Further grain growth is inhibited by grains’ impingement after the strained grains are exhausted. Grains consumed by the growing ALGs tend to establish special boundary relationships with the ALGs and can turn into island grains. The significant reduction of tubes’ strength after annealing is attributed to the diminishment of grain boundaries caused by the formation of ALGs.



The authors acknowledge the funding from the National Natural Science Foundation of China (Project Nos. 51705315, 51575346, and U1832183). One of the authors (DL) appreciates the support of the Materials Genome Initiative Center, Shanghai Jiao Tong University.


  1. 1.
    J. Zhao, Y.H. Diao, Y.H. Zhao, and Y.N. Zhang: Appl. Therm. Eng., 2014, vol. 65 (1), pp. 209–18.Google Scholar
  2. 2.
    M.M. Guzowski, F.F. Kraft, H.R. McCarhery, and J.C. Noveskey: Proc. Conf. 4th on Vehicle Thermal Management Systems, Wiley-Blackwell, Hoboken, NJ, 1999, pp. 24–27.Google Scholar
  3. 3.
    K. Li, T.X. Zou, D.Y. Li, D. Shu, D. Tang, and Y.H. Peng: J. Mater. Eng. Perform., 2019, Scholar
  4. 4.
    D. Tang, X. Fan, W. Fang, D. Li, Y. Peng, and H. Wang: Mater. Charact., 2018, vol. 142, pp. 449–57.CrossRefGoogle Scholar
  5. 5.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 3rd ed., Elsevier, Amsterdam, 2017, pp. 145–304.CrossRefGoogle Scholar
  6. 6.
    P.A. Beck and P.R. Sperry: J. Appl. Phys., 1950, vol. 21 (2), pp. 150–52.CrossRefGoogle Scholar
  7. 7.
    J.B. Koo and D.Y. Yoon: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 469–75.CrossRefGoogle Scholar
  8. 8.
    V.M. Miller, A.E. Johnson, C.J. Torbet, and T.M. Pollock: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1566–74.CrossRefGoogle Scholar
  9. 9.
    G. He, L. Tan, F. Liu, L. Huang, Z. Huang, and L. Jiang: J. Alloys Compd., 2017, vol. 718, pp. 405–13.CrossRefGoogle Scholar
  10. 10.
    V.S. Tong and T.B. Britton: Acta Mater., 2017, vol. 129, pp. 510–20.CrossRefGoogle Scholar
  11. 11.
    A.D. Rollett, D.J. Srolovitz, and M.P. Anderson: Acta Metall., 1989, vol. 37 (4), pp. 1227–40.CrossRefGoogle Scholar
  12. 12.
    S.G. Kim and B.P. Yong: Acta Mater., 2008, vol. 56 (15), pp. 3739–53.CrossRefGoogle Scholar
  13. 13.
    E.J. Payton, G. Wang, M.J. Mills, and Y. Wang: Acta Mater., 2013, vol. 61 (4), pp. 1316–26.CrossRefGoogle Scholar
  14. 14.
    M. Shirdel, H. Mirzadeh, and M.P. Habibi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5185–93.CrossRefGoogle Scholar
  15. 15.
    C.G. Dunn and J.L. Walter: Recrystallization, Grain Growth and Texture, ASM, Metals Park, OH, 1965, p. 461.Google Scholar
  16. 16.
    F. Fang, Y.X. Zhang, X. Lu, Y. Wang, M.F. Lan, G. Yuan, R.D.K. Misra, and G.D. Wang: Scripta Mater., 2018, vol. 147, pp. 33–36.CrossRefGoogle Scholar
  17. 17.
    T. Omori, T. Kusama, S. Kawata, L. Ohnuma, Y. Sutou, Y. Araki, K. Ishida, and R. Kainuma: Science, 2013, vol. 341 (6153), pp. 1500–02.CrossRefGoogle Scholar
  18. 18.
    H.C. Kim, C.G. Kang, M.Y. Huh, and E. Olaf: Scripta Mater., 2007, vol. 57 (4), pp. 325–27.CrossRefGoogle Scholar
  19. 19.
    T.W. Na, H.K. Park, C.S. Park, J.T. Park, and N.M. Hwang: Acta Mater., 2016, vol. 115, pp. 224–29.CrossRefGoogle Scholar
  20. 20.
    A.J. Carpenter: Master’s Thesis, The University of Texas at Austin, Austin, TX, 2011, pp. 33–41.Google Scholar
  21. 21.
    I. Charit and R.S. Mishra: Scripta Mater., 2008, vol. 58 (5), pp. 367–71.CrossRefGoogle Scholar
  22. 22.
    S. Jana, R.S. Mishra, J.A. Baumann, and G. Grant: Mater. Sci. Eng. A, 2010, vol. 528, pp. 189–99.CrossRefGoogle Scholar
  23. 23.
    X.H. Fan, D. Tang, W.L. Fang, D.Y. Li, and Y.H. Peng: Mater. Charact., 2016, vol. 118, pp. 468–80.CrossRefGoogle Scholar
  24. 24.
    X.H. Fan: Doctoral Thesis, Shanghai Jiao Tong University, Shanghai, 2017, pp. 36–45.Google Scholar
  25. 25.
    J.J. Salinas and A. Salinas: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2117–25.CrossRefGoogle Scholar
  26. 26.
    M. Sachtleber, Z. Zhao, and D. Raabe: Mater. Sci. Eng. A, 2002, vol. 336 (1), pp. 81–87.CrossRefGoogle Scholar
  27. 27.
    F. Bachmann, R. Hielscher, and H. Schaeben: Ultramicroscopy, 2011, vol. 111 (12), pp. 1720–33.CrossRefGoogle Scholar
  28. 28.
    J.B. Koo, D.Y. Yoon, and M.F. Henry: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1489–91.CrossRefGoogle Scholar
  29. 29.
    J. Harase, R. Shimizu, and N. Takahashi: Acta Metall. Mater., 1990, vol. 38 (10), pp. 1849–56.CrossRefGoogle Scholar
  30. 30.
    V. Randle, N. Hansen, and D. Juul Jensen: Philos. Mag. A, 1996, vol. 73 (2), pp. 265–82.CrossRefGoogle Scholar
  31. 31.
    W. Yin, W. Wang, X. Fang, C. Qin, and X. Xing: Mater. Charact., 2015, vol. 107, pp. 134–38.CrossRefGoogle Scholar
  32. 32.
    W.C. Liu, P.P. Zhai, and C.S. Man: Mater. Sci. Eng. A, 2012, vol. 531, pp. 178–81.CrossRefGoogle Scholar
  33. 33.
    K. Kashihara, Y. Takeuchi, and T. Shibayanagi: Mater. Trans., 2010, vol. 51 (4), pp. 607–13.CrossRefGoogle Scholar
  34. 34.
    K. Kashihara, H. Konishi, and T. Shibayanagi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8443–50.CrossRefGoogle Scholar
  35. 35.
    C. Antonione, F. Marino, G. Riontino, and M.C. Tabasso: J. Mater. Sci., 1977, vol. 12 (4), pp. 747–50.CrossRefGoogle Scholar
  36. 36.
    W.T. Read and W. Shockley: Phys. Rev., 1950, vol. 78, pp. 275–89.Google Scholar
  37. 37.
    Y. Takayama and J.A. Szpunar: Mater. Trans., 2005, vol. 45 (7), pp. 2316–25.CrossRefGoogle Scholar
  38. 38.
    J.J. Salinas and A. Salinas: J. Mater. Eng. Perform., 2015, vol. 24 (5), pp. 2117–25.CrossRefGoogle Scholar
  39. 39.
    S.P. Bellier and R.D. Doherty: Acta Metall., 1977, vol. 25 (5), pp. 521–38.CrossRefGoogle Scholar
  40. 40.
    G. Abrivard, E.P. Busso, S. Forest, and B. Appolaire: Philos. Mag., 2012, vol. 92, pp. 3618–42.CrossRefGoogle Scholar
  41. 41.
    N.A. Pedrazas, T.E. Buchheit, E.A. Holm, and M.T. Eric: Mater. Sci. Eng. A, 2014, vol. 610, pp. 76–84.CrossRefGoogle Scholar
  42. 42.
    V. Randle and A. Brown: Philos. Mag. A, 1988, vol. 58 (5), pp. 717–36.CrossRefGoogle Scholar
  43. 43.
    Z. Li, C. Hou, M. Huang, and C. Ouyang: Comput. Mater. Sci., 2009, vol. 46 (4), pp. 1124–34.CrossRefGoogle Scholar
  44. 44.
    H. Lim, M.G. Lee, J.H. Kim, B.L. Adams, and R.H. Wagoner: Int. J. Plast., 2011, vol. 27 (9), pp. 1328–54.CrossRefGoogle Scholar
  45. 45.
    Q.L. Zhao, B. Holmedal, Y.J. Li, E. Sagvolden, and O.M. Løvvik: Mater. Sci. Eng. A, 2015, vol. 625, pp. 153–57.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Kai Li
    • 1
  • Tianxia Zou
    • 1
  • Dayong Li
    • 2
    Email author
  • Yinghong Peng
    • 1
  • Da Shu
    • 3
  1. 1.State Key Laboratory of Mechanical Systems and VibrationShanghai Jiao Tong UniversityShanghaiP.R. China
  2. 2.State Key Laboratory of Mechanical Systems and Vibration, Materials Genome Initiative CentreShanghai Jiao Tong UniversityShanghaiP.R. China
  3. 3.Shanghai Key Lab of Advanced High-temperature Materials and Precision FormingShanghai Jiao Tong UniversityShanghaiP.R. China

Personalised recommendations