Metallurgical and Materials Transactions A

, Volume 50, Issue 12, pp 5713–5726 | Cite as

Effects of Trace Al Addition on the Microstructure, Hot Deformation Behavior and Mechanical Properties of High-Strength Mg-Gd-Y-Zn Magnesium Alloy

  • Xiang Li
  • Wenlong XiaoEmail author
  • Shaoyuan Lyu
  • Maowen Liu
  • Chaoli Ma


The effects of 0.2 wt pct Al addition on the microstructure, hot deformation behavior and mechanical properties of Mg-8Gd-4Y-1Zn alloy were investigated. The results showed that the Al addition obviously refined the grain structure and increased the 18R long period stacking ordered (LPSO) phase. In addition, a little Al2(Y, Gd) phase formed in the as-cast Al-doped alloy. After solid solution treatment, the Al2(Y, Gd) phase and Mg5(Gd, Y, Zn) eutectic phase were dissolved, and both 18R- and 14H-type LPSO phases could be observed at the grain boundaries of the Al-doped alloy. For the Al-free alloy, the 18R LPSO phase disappeared, and lamellar 14H-LPSO was generated in the grain interior. The calculated results showed that the Al-doped alloy had higher hot deformation activation energy and better hot workability. Under the same extrusion condition, the Al-doped alloy showed faster dynamic recrystallization but similar fully recrystallized grain size as the Al-free alloy. The average tensile strength, yield strength and elongation of the extruded alloy were concurrently improved from 329 MPa, 268 MPa and 6.0 pct to 365 MPa, 281 MPa and 11.1 pct by trace Al addition.



The authors are grateful for the financial support by the National Key Research and Development Program of China (No. 2016YFB0301103) and National Natural Science Foundation of China (NSFC, No. 51401010).


  1. 1.
    M.K. Kulekci: Int. J. Adv. Manuf. Tech, 2008, vol. 39, pp. 851-865.Google Scholar
  2. 2.
    J. F. Nie: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3891-3939.Google Scholar
  3. 3.
    J.D. Robson, S.J. Haigh, B. Davis and D. Griffiths: Metall. Mater. Trans. A, 2016, vol. 47, pp. 522-530.Google Scholar
  4. 4.
    S.H. You, Y.D. Huang, K.U. Kainer and N. Hort: J. Mag. Alloy, 2017, vol. 5, pp. 239-253.Google Scholar
  5. 5.
    J.H. Zhang, S.J. Liu, R.Z. Wu, L. Hou and M.L. Zhang: J. Mag. Alloy, 2018, vol. 6, pp. 277-291.Google Scholar
  6. 6.
    M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga and Y. Kawamura: Acta Mater, 2007, vol. 55, pp. 6798-6805.Google Scholar
  7. 7.
    T. Homma, N. Kunito and S. Kamado: Scr. Mater, 2009, vol. 61, pp. 644-647.Google Scholar
  8. 8.
    L. Zheng, C.M. Liu, Y.C. Wan, P.W. Yang and X. Shu: J. Alloy. Compd, 2011, vol. 509, pp. 8832-8839.Google Scholar
  9. 9.
    C. Xu, M. Y. Zheng, S. W. Xu, K. Wu, E. D. Wang, S. Kamado, G. J. Wang and X. Y. Lv: Mater. Sci. Eng. A 2012, vol. 547, pp. 93-98.Google Scholar
  10. 10.
    W. W. Jian, G. M. Cheng, W. Z. Xu, H. Yuan, M. H. Tsai, Q. D. Wang, C. C. Koch, Y. T. Zhu and S. N. Mathaudhu: Mater Res Lett, 2013, vol. 1, pp. 61-66.Google Scholar
  11. 11.
    Z.J. Yu, Y.D. Huang, X. Qiu, G.F. Wang, F.Z. Meng, N. Hort and J. Meng: Mater. Sci. Eng. A 2015, vol. 622, pp. 121-130.Google Scholar
  12. 12.
    K. Wang, J.F. Wang, S. Huang, S.Q. Gao, S.F. Guo, S.J. Liu, X.H. Chen and F.S. Pan: Mater. Sci. Eng. A 2018, vol. 733, pp. 267-275.Google Scholar
  13. 13.
    S.Y. Lyu, W.L. Xiao, R.X. Zheng, F. Wang, T. Hu and C.L. Ma: Mater. Sci. Eng. A 2018, vol. 732, pp. 178-185.Google Scholar
  14. 14.
    J.F. Wang, K. Wang, F. Hou, S.J. Liu, X. Peng, J.X. Wang and F.S. Pan: Mater. Sci. Eng. A 2018, vol. 728, pp. 10-19.Google Scholar
  15. 15.
    C. J. Bettles and M. A. Gibson: JOM, 2005, vol. 57, pp. 46-49.Google Scholar
  16. 16.
    Z. R. Zeng, N. Stanford, C. H. J. Davies, J. F. Nie and N. Birbilis: Int Mater Rev 2019, vol. 64, pp. 27-62.Google Scholar
  17. 17.
    B.J. Lv, J. Peng, L.L. Zhu, Y.J. Wang and A.T. Tang: Mater. Sci. Eng. A 2014, vol. 599, pp. 150-159.Google Scholar
  18. 18.
    H. Liu, J. Ju, X.W. Yang, J.L. Yan, D. Song, J.H. Jiang and A.B. Ma: J. Alloy. Compd, 2017, vol. 704, pp. 509-517.Google Scholar
  19. 19.
    E. Oñorbe, G. Garcés, F. Dobes, P. Pérez and P. Adeva: Metall. Mater. Trans. A 2013, vol. 44, pp. 2869-2883.Google Scholar
  20. 20.
    Y. Li, W.L. Xiao, F. Wang, T. Hu and C.L. Ma: J. Alloy. Compd, 2018, vol. 745, pp. 33-43.Google Scholar
  21. 21.
    W.L. Xiao, S.S. Jia, J.L. Wang, J. Yang, L.D. Wang and L.M. Wang: J. Mater. Res, 2008, vol. 23, pp. 2609-2621.Google Scholar
  22. 22.
    D. Qiu, M.X. Zhang and P.M. Kelly: Scr. Mater, 2009, vol. 61, pp. 312-315.Google Scholar
  23. 23.
    J.P. Pan: Harbin Institute of Technology, Harbin, unpublished research, 2013.Google Scholar
  24. 24.
    J. P. Li, Z. Yang, T. Liu, Y. C. Guo, F. Xia, J. M. Yang and M. X. Liang: Scr. Mater, 2007, vol. 56, pp. 137-140.Google Scholar
  25. 25.
    J.C. Dai, S.M. Zhu, M.A. Easton, M.X. Zhang, D. Qiu, G.H. Wu, W.C. Liu and W.J. Ding: Mater. Sci. Eng. A 2013, vol. 576, pp. 298-305.Google Scholar
  26. 26.
    Y. X. Li, D. Qiu, Y. H. Rong and M. X. Zhang: Philos Mag, 2014, vol. 94, pp. 1311-1326.Google Scholar
  27. 27.
    C.L. Wang, J.C. Dai, W.C. Liu, L. Zhang and G.H. Wu: J. Alloy. Compd, 2015, vol. 620, pp. 172-179.Google Scholar
  28. 28.
    H. Zhang, C. Q. Liu, Y. M. Zhu, H. W. Chen, L. Bourgeois and J. F. Nie: Acta Mater, 2018, vol. 152, pp. 96-106.Google Scholar
  29. 29.
    C. Xu, T. Nakata, X. G. Qiao, M. Y. Zheng, K. Wu and S. Kamado: Sci. Rep. 2017, vol. 7, p. 43391.Google Scholar
  30. 30.
    W. J. Ding, Y. J. Wu, L. M. Peng, X. Q. Zeng, G. Y. Yuan and D. L. Lin: J. Mater. Res, 2009, vol. 24, pp. 1842-1854.Google Scholar
  31. 31.
    Y. M. Zhu, A. J. Morton and J. F. Nie: Acta Mater. 2012, vol. 60, pp. 6562-6572.Google Scholar
  32. 32.
    T. Sakai and J. J. Jonas: Acta Metall, 1984, vol. 32, pp. 189-209.Google Scholar
  33. 33.
    H. J. McQueen: Mater. Sci. Eng. A 2004, vol. 387-389, pp. 203-208.Google Scholar
  34. 34.
    J. J. Jonas, C. M. Sellars and W. J. McG Tegart: Metall. Rev, 1969, vol. 14, pp. 1-24.Google Scholar
  35. 35.
    Y.C. Zhang, L. Yang, J. Dai, J.G. Ge, G.L. Guo and Z. Liu: Mater Design, 2014, vol. 63, pp. 439-445.Google Scholar
  36. 36.
    M. E. Kassner: Mater. Sci. Eng. A 2005, vol. 410-411, pp. 20-23.Google Scholar
  37. 37.
    Y. V. R. K. Prasad: J. Mater. Eng. Perform, 2003, vol. 12, pp. 638-645.Google Scholar
  38. 38.
    Y. V. R. K. Prasad and T. Seshacharyulu: Int. Mater. Rev, 1998, vol. 43, pp. 243-258.Google Scholar
  39. 39.
    B.J. Lv, J. Peng, D.W. Shi, A.T. Tang and F.S. Pan: Mater. Sci. Eng. A 2013, vol. 560, pp. 727-733.Google Scholar
  40. 40.
    K. Wen, K. Liu, Z.H. Wang, S.B. Li and W.B. Du: J. Mag. Alloy, 2015, vol. 3, pp. 23-28.Google Scholar
  41. 41.
    J. D. Robson, D. T. Henry and B. Davis: Acta Mater, 2009, vol. 57, pp. 2739-2747.Google Scholar
  42. 42.
    X. Wu, F.S. Pan, R.J. Cheng and S.Q. Luo: Mater. Sci. Eng. A 2018, vol. 726, pp. 64-68.Google Scholar
  43. 43.
    E. Oñorbe, G. Garcés, P. Pérez and P. Adeva: J. Mater. Sci, 2012, vol. 47, pp. 1085-1093.Google Scholar
  44. 44.
    X. H. Shao, Z. Q. Yang and X. L. Ma: Acta Mater, 2010, vol. 58, pp. 4760-4771.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Xiang Li
    • 1
  • Wenlong Xiao
    • 1
    Email author
  • Shaoyuan Lyu
    • 1
  • Maowen Liu
    • 1
  • Chaoli Ma
    • 1
  1. 1.Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations